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EFFICIENT SOLUTION OF FULLY IMPLICIT RUNGE-KUTTA
METHODS FOR LINEAR WAVE EQUATIONS*

AMAN RANIf, PIETER GHYSELS?, VICTORIA HOWLE', KATHARINE LONG', AND
MICHAL OUTRATA®

Abstract. We focus on time integration of time-dependent linear hyperbolic PDEs, where
implicit Runge-Kutta (IRK) time stepping is an increasingly popular technique. However, this
approach gives rise to linear block systems with a Kronecker product structure, involving the Butcher
table and the mass and stiffness matrices. Taking the wave equation as the canonical example, the
system arising from IRK time stepping is highly ill-conditioned but we can exploit the block structure.
If N is the number of degrees of freedom for the discretization of the Laplace operator, then the
resulting system matrix is a block s X s matrix where each block is of size O(N) x O(N), and s is the
number of IRK stages. We reformulate the large O(Ns) x O(Ns) block structured linear system as
a Sylvester matrix equation. This leads to s separate systems of order O(N) x O(N), these smaller
systems are efficiently handled with the subsolves replaced by a single AMG V-cycle. We demonstrate
the effectiveness of our approach on a 2D wave problems. Our experiments show that our approach
not only reduces runtime but also requires fewer AMG V-cycles compared to traditional methods. As
the number of Runge—Kutta stages increases and the mesh is refined, the Sylvester approach proves
to be at least twice as fast as other existing methods, while also requiring fewer AMG V-cycles. We
also introduce a block lower triangular preconditioner based on minimization of |[L™'A — I||2 over
the lower triangular matrices L (A being the Butcher table), which improves on an existing method
based on minimization of x(L~!A).

Key words. Preconditioning, Time Integrator, Implicit Runge-Kutta Methods, Hyperbolic
PDEs

1. Introduction. Explicit time steppers are a popular choice for hyperbolic
PDEs but they put constraints on the time step. As we dive into scientific model-
ing and simulation, we encounter stiff systems arising from any spatial discretization
(FEM, FDM, spectral, etc.) of the given hyperbolic/parabolic PDE. Accurately in-
tegrating these stiff equations demands very small time steps or the use of uncondi-
tionally stable time integrators. Implicit Runge-Kutta (IRK) methods stand out for
handling such challenges as they avoid the Dahlquist barrier [10], enabling them to
achieve higher-order accuracy without limitations. IRK methods, known for their sta-
bility and high order, have been less utilized for PDEs due to the challenge of handling
large, strongly coupled linear systems. Recently, we have seen a renewed interest in
tackling some of these challenges, focusing both on the practical implementation (see,
among others, [1, 3, 9, 13, 22, 30, 32, 33, 38|, as well as on the analysis (see, among
others, [11, 14, 15]).

In [9, 28, 33, 39], the preconditioners introduced for these large systems are based
on the diagonal or (more often) triangular approximation of the Butcher matrix A
or its factors, aiming to overcome challenges associated with stage-coupled systems
and to improve the scalability of the solution process. For an s-stage Runge-Kutta
scheme and a spatial operator discretized with N degrees of freedom, the resulting
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2 A. RANI, P. GHYSELS, V. HOWLE, K. LONG AND M. OUTRATA

linear system of stage unknowns is of size O(sN) x O(sN). Triangular approximation
of the Butcher table leads to a block triangular linear system with s block-rows and
block-columns with blocks of size O(NN'), which can be solved using forward/backward
substitution (for lower or upper triangular approximation respectively). This substi-
tution phase is sequential, but each of the s subsolves can use standard solvers for
mass and/or stiffness matrices. In this work, we reformulate the large linear system
as a Sylvester matrix equation. This allows us to use well established linear algebra
techniques to tackle this problem [36]. We use a transformation based on an eigen-
decomposition of the inverse transpose of the Butcher matrix to transform the large
O(sN) system into a block diagonal matrix, resulting in s separate smaller linear
systems. Similar approaches were already proposed by Butcher [6] and Bickart [5],
see also [18]. Here we focus on the efficient solution of the resulting shifted linear
systems and how to deal with the complex arithmetic resulting from the eigende-
composition. When first introduced in [6], it was argued that this transformation to
block diagonal form also allows for more parallelism, since the s subsolves can be per-
formed concurrently. However, in order to exploit this, a costly matrix redistribution
might be required. We recognize that the s linear systems can be solved efficiently,
with standard solvers for mass/stiffness matrices, by fusing the matrix-vector prod-
ucts and the preconditioner applications and exploiting sparse matrix multiplication
with multiple vectors (sparse matrix times dense matrix), instead of sparse matrix
times vector multiplication. Due to its low arithmetic intensity, sparse matrix-vector
multiplication is typically memory bandwidth limited. The sparse matrix times dense
matrix kernel has a much higher arithmetic intensity — increasing with the number
of vectors/stages s — and can achieve much higher performance on modern hardware.
This is nicely illustrated by the roofline model [45]. Likewise, the preconditioner can
be applied to multiple vectors at once. Unfortunately, not all state-of-the-art precon-
ditioners support application to multiple vectors at once. Most sparse direct solvers,
including SuperLU_Dist [23] do support this feature, but for instance pyAMG [4] does
not.

A novel preconditioning approach for IRK systems was introduced in [38], with a
follow-up paper [37] describing the non-linear setting. We have not yet compared our
Sylvester reformulation against their approach; this comparison will be examined in
a forthcoming paper.

Our main contributions in this work are:

e We show how the large block-structured linear systems from IRK methods
can be reformulated as a Sylvester matrix equation, which can be solved with
standard linear algebra techniques.

e We show how to solve the resulting set of smaller shifted linear systems effi-
ciently by exploiting sparse matrix times dense matrix operations.

e We discuss the issues arising from complex arithmetic required to solve the
Sylvester equation and how to deal with them in simulation frameworks that
cannot handle complex-valued subsolves.

e We also present a new preconditioner based on a lower triangular approxima-
tion of the Butcher table called Pra;, which improves on those in [39, 33].
It is easier to implement compared to [33] and outperforms those in [39, 33],
see section 4 for comparisons of Prar, Prp and Pi.

We focus on Gauss—Legendre IRK methods because these methods are A-stable,
have an optimal order-to-stage ratio (order of accuracy 2s) and also preserve quadratic
invariants of the (spatially discretized) system [17]. An energy functional is conserved
during the exact evolution of the wave equation, and it is desirable that a numerical
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EFFICIENT SOLUTION OF FULLY IRK METHODS FOR LINEAR WAVE EQUATION 3

method respect this conservation property. Upon spatial discretization the energy
functional is approximated by a quadratic form acting on the solution vector. With
a quadratic invariant preserving method such as Gauss—Legendre or Lobatto IIS, the
value of this quadratic form remains constant (to within the inevitable roundoff error)
during timestepping.

We use the following notation. Matrices are denoted by capital letters, lower case
letters refer to scalars, while lower case bold letters refer to vectors (except when
referring to columns of a matrix). The Kronecker product (sometimes called the
matrix outer product) is denoted by ® and the vec(-) operator, defined as

Ky
(1.1)

where K; denotes column i of matrix K, reshapes a matrix to a column vector by
stacking the columns. Since we store matrices in column-major ordering, this reshap-
ing can be done without memory copies.

The remainder of the paper is outlined as follows. In section 2 we recall the general
s—stage implicit Runge-Kutta method, the Butcher table and the wave equation.
Section 3 describes the transformation to block diagonal form using the Sylvester
matrix reformulation and how to solve the resulting shifted linear systems. Section 4
shows the preconditioner analysis and performance results, including comparison with
several other preconditioners. Finally, we conclude the paper in section 5.

2. Implicit Runge—Kutta Time Stepping for the Wave Equation. The
general s—stage IRK method for u’ = ¢(t,u) has the form

Upg1 = U + Iy Y biki, with

i=1

k; = ¢(tn + cihi, un + hy Zaijkj)7
=1

which is summarized by the Butcher table

C1 a11 A1s
2.1) c| A
Cs | As1 Qss b"
by b

where A € R**°, b € R?, c € R®. We use the wave equation

gy — 2 AN u = b(x,t), in Q x (0,77,
n - Vu =0, on 012,
(22) .
u(x,0) = f(x), in Q,
ut(wao) = g(iL‘), in €,

for the exposition of our method and the connected ideas, and explore more general
setting in Section 4.4. In principle, the derivations below apply to any second-order
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4 A. RANI, P. GHYSELS, V. HOWLE, K. LONG AND M. OUTRATA

linear hyperbolic PDE without time-dependent coefficients (even if, e.g., discretized
with a Runge-Kutta-Nystrom method). While the generalization for time-dependent
coefficients and/or for nonlinear problems is practically important, it goes beyond the
scope of this manuscript and will be treated in a separate manuscript.

Denoting u; = v, we introduce the vector w, concatenating u and v, and rewrite
the above system (2.2) as a first order time dependent PDE

w; = Bw + b, in ©Q x (0,77,
cfw =0, on 05,
’11](:1370) :wO(m)a in Q7

where w = (v)’B_ (CQA O),b— (b),c —( 0 )andwo— (g)

Converting to weak form and discretizing using the standard finite element setting,
we get the following linear system

(2.3) Mw,(t) = Bw(t) + b7 (1),

ST)

where the vector b! aggregates the source terms stemming from the FEM dis-

cretization of the original functions b(x,t), f(z) and g(x) in (2.2) and M = {]\g ]\OA
O M

and B = [E 0

] . M and FE are the mass and stiffness matrices given as

(2.4) M;; = /¢z‘¢j , B = /V@‘ -Vo;,

where {¢;} are the finite-element basis functions. For the above linear system (2.3),
we use an IRK method (2.1), obtaining the stage equations

S
Mkiszn-l-htZaijBkj—l-ngT), i=1,....s,

j=1

where the vectors bEST) correspond to evaluations of bST) at the corresponding time-
points based on the chosen Runge-Kutta method. We rewrite this system using the
block notation

M —hanB  ~haB ... —haB ] [k [Bwn + 5"
—hiao1 B M — hiass B ... —hiass B ko Bw,, + béST)

(2.5) . : , . = , )
“haaB  ~haoB ... M —hawB] (k] | B, + (5D

and denote the vector of unknowns in (2.5) as k € R?>M* and the right hand side
vector as f € R?V*. Using the Kronecker product notation, we further rewrite (2.5)
as

(2.6) Ak=f, with A= M- hA®B.

Note that we never need to (and essentially never should) form this large 2Ns X
2N s system explicitly. Instead, all operations can be written in terms of the stiffness
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EFFICIENT SOLUTION OF FULLY IRK METHODS FOR LINEAR WAVE EQUATION 5

and mass matrices. For instance, the system matrix in (2.6) can be applied to a vector
u efficiently by taking linear combinations of the matrix products

M[(u1)1 (u1)2 (u2)1 (u2)2 ... (us)1 (us)Z]

(27) E [(ul)l (U2)1 e (us)l] s

where u; = [(u;)T (uz)ﬂT, with (u;)1 and (u;)2 both vectors of size N.

3. Sylvester Matrix Reformulation. In the literature, the original structured
system in (2.6) is often solved with preconditioned GMRES with a preconditioner of
the general form P = I, @ M — hyA® B [9, 28, 33, 39]. But in our approach, we
will take advantage of the Sylvester matrix system to break down the problem into
solving s smaller systems of order 2N x2N. We assume the invertibility of the Butcher
coefficient matrix A but for the standard methods, such as Gauss—Legendre, Radau
TA, Radau ITA, and Lobatto IIIC, the Butcher matrices are known to be regular,
see [18]. Moreover, as mentioned in [18, page 368], the Butcher matrices for the

S
Gauss—Legendre IRK methods have s distinct eigenvalues which come in | = | complex

conjugate pairs and possibly a single real eigenvalue (if s is odd). In particular, the
matrices are diagonalizable. The diagonalizability of A has been observed numerically
also for the other IRK methods we listed.

For the Sylvester matrix reformulation of (2.6), we factor out A®Iy™ and multiply
both sides by I, ® M ™!, getting

I,eM ) (A'eM-hI,®B)(A® Ly)k= (I, M ')f
(A*1®12N+IS®B) (A® Ly)k=f
(3.1) (A*1 ®12N+IS®B)IE:: f

where B= —mM~'B, k= (A® Ion) k and f = (IS ® ]\7[_1) f. Now, the system in
(3.1) can be reformulated as a Sylvester matrix equation

(3.2) BK+ KA T=F

where, vec(K) = k, and vec(F) = f [42]. Considering the eigenvalue decomposition
of the matrix A7

AT =wDW™!,  with D = diag(dy, da, ..., ds),
(3.1) then becomes
BK+K (WDW™') =F
BKW + KWD = FW
BK+KD=F,

where K = KW and F = FW. Since D is diagonal, this is simply a set of shifted

*This idea was first introduced by Butcher in [6].
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6 A. RANI, P. GHYSELS, V. HOWLE, K. LONG AND M. OUTRATA

linear systems

(B+did) (K)i= (F)i, i=1,...s
(~hM™'B+d;I) (K); = (FW);
(~B +d;M) (K); = (MFW);
(—htB + dzM) (K)z = (MMﬁlFW)l
(3.3) (M - Z’;B> (R); = dli(FW)i.

As the eigenpairs of A~T all come in complex conjugate pairs (and an extra real
eigenpair if s is odd), we can order them so that

dgi :Conj(dgi_l), 1= 1,2,..., \;SJ 5

and since B and M are real, we have

o _ h IS
MfiB:M——fL—B:m%M— tB)i:Lzm{ﬂ,
2 conj(dai—1) dai—1 2
and similarly
. . s
(FW)a; = conj((FW)2;-1), 1=1,2,..., [ﬂ .

In words, computing the solution of the (2i — 1)-th system, its complex conjugation
gives us the solution of the 2i-th system, i.e., we only need to solve [s/2] out of the s
systems in (3.3). We shall take these corresponding to d; with non-negative imaginary

parts and refer to these as
. 1 . s
(3.4) A%mMK%—EﬂFW%,Z—LZHW[ﬂ,

where Ag,; denotes a 2N [s/2] x 2N [s/2] block diagonal system with the (4,7) di-

agonal block denoted as Agy[ii] = M — jB. We discuss the solution of these in

Section 3.1. Finally, we need to compute K = KW ™', then k = vec(f()7 and
(35) k=(A®Ly) k= (A™' @ In) vee(K) = vec(KA™T) = vec(KDW ™).

3.1. Solving Shifted Linear Systems. In this section we discuss how to solve
the [s/2] shifted linear systems from (3.3). We discuss two alternative approaches. In
the first method, denoted as Pfqyl, the shifted systems are each solved separately with
preconditioned GMRES. In the alternative approach, denoted as Pé;l, the shifted
systems are solved simultaneously with a single call to (preconditioned) GMRES.

The Péyl approach. To solve each of the shifted linear systems separately, we use

preconditioned GMRES, with the preconditioner based on the block LU decomposi-

tion of M — %B,

(36) M-——"B=|hn he ) 4|, i=1,...,[s/2].
d; ‘B M+(=) E|l |l T
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EFFICIENT SOLUTION OF FULLY IRK METHODS FOR LINEAR WAVE EQUATION 7

Proceeding with the standard block forward and backward substitution based on (3.6)
requires a system solve with M and M + (hy/d;)*E. However, as we aim for a
preconditioner, these solves can and should be only approximate. Also, as d; € C, the
system solve with M 4 (h;/d;)?E is complex-valued.

Approximating the solve with M is the easier of the two tasks as it is a real
matrix identical for all of the systems in (3.4). We considered replacing the solve
with M with one or two iterations of the Gauss—Seidel method or with one V-cycle
of AMG. Although, the use of two (one) iterations of Gauss—Seidel results in slightly
(somewhat) larger number of GMRES iterations than with one AMG V-cycle, we
observed faster runtimes and thus we stick to using two iterations of Gauss—Seidel as
the approximate solver! for M.

Considering M + (hy/d;)*E, we get |s/2] complex-valued matrices (for s odd, we
get an extra real-valued one), hence using one AMG V-cycle would require separate
set-up of AMG in complex-valued arithmetic (see [27]), a non-trivial time investment.
We instead replace the complex eigenvalues dy,...,d|s/2) with a single scalar d and
take d = davg = (d1 + ...+ ds)/s, replacing M + (h¢/d;)*E with M + (ht/davg)QE.
This way we deal with the same matrix solve for all [s/2] forward substitutions
(when applying the preconditioner for (3.4)). Moreover, since the eigenvalues appear
in complex conjugate pairs, d.vg is always real and hence the same is true for M 4+
(hi/davg)*E. Apart from being always real, dayg is also the minimizer of |D — dI||r
over all d, i.e., the best scalar approximation of D. We also did extensive numerical
testing, trying to optimize for the choice of d € R to improve the quality of the
preconditioner and observed that the choice d = dayg leads to (close to) the best
performing one’, regardless of s and N. Altogether, we now call the preconditioner
setup phase (for AMG or even SuperLU) only once the matrix M + (h;/davg)>E —
instead of [s/2] times, reducing the preconditioner setup time.

The ’Péél approach. Alternatively to solving the systems in (3.4) independently,
we can stack the systems in (3.4) into a single larger block diagonal system

o, 1
Moa® (K, a1
y he (K) 1
M — B [s/2] (FW) s/2
drs/2] drs/2) [+/21

and solve (3.7) with preconditioned GMRES, where the preconditioner corresponds
to stacking the preconditioners for the Péyl approach. Naturally, neither of these
large matrices should be assembled and instead we formulate all their applications in
terms of the matrix-vector products/solves, analogously to (2.7). The main benefit
of solving (3.7) over using [s/2] separate GMRES instances for (3.4) is that now the
matrix-vector products with the [s/2] diagonal blocks can be batched together, in the
sense of (2.7) — for both the system matrix as well as the preconditioner application.
For instance, for the matrix-vector multiplication with the system matrix in (3.7)

TWe note that mass lumping can also be a useful approach, particularly in the context of higher-
order FEM discretizations, see, e.g., [44] and the references therein.

#We aimed to minimize the number of GMRES iterations for the slowest of the systems (3.3) using
the preconditioner (3.6) with d; replaced with some d € R. Convergence of some of the systems can
be further accelerated by a different choice of d # davg but not the slowest, numerically confirming
d = davg as a sensible choice.

This manuscript is for review purposes only.
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8 A. RANI, P. GHYSELS, V. HOWLE, K. LONG AND M. OUTRATA

with a vector w of size 2N [s/2], we only need to apply the matrices M and E once
to 2[s/2] vectors and then consider appropriate linear combinations (including the
complex shifts corresponding to d;). This is done by reshaping the vector w into a
matrix U € RY*2[%/2] such that vec(U) = u, and only then applying either M or E.

For sparse matrices, product with dense matrices has a much higher arithmetic
intensity than a sequence of products with vectors and thus runs more efficiently [45].
The same is true when solving linear systems with sparse matrices and single/multiple

dense right-hand sides. This clearly presents the upside of the Péél approach.

However, there are also drawbacks. The 'Péil approach introduces a synchro-

nization point in the solution process of (3.4), which limits the parallelization of the
solution process. To asses whether it is more efficient to prioritize the arithmetic
density or the completely parallel set-up is highly machine-dependent and we don’t
comment on this any further.

Another drawback of the ngl approach is that the number of preconditioned
GMRES iterations for (3.7) is usually somewhat higher than the average number of
preconditioned GMRES iterations for the independent shifted systems in (3.4). Notice
that this is not easily explainable by the standard GMRES bounding techniques using
the so-called ideal GMRES bound (see [24, Sec. 5.7.3, (5.7.13)]), which focuses on
the matrix polynomial norm estimation, see [12, 16, 24]. Indeed, the eigenpairs of
the preconditioned system for the Pé{/l approach are easily calculated based on those
of the preconditioned systems Péyl approach, e.g., eigenvalues in Pfgél correspond to
the union of the eigenvalues for ngl. Similarly, FoV Péél is the convex hull of the
FoVs for Péyl (see [20, Property 1.2.10, p.12]) and similar calculation also holds for the
pseudospectra (see [40, Theorem 2.4]). In fact, the difference in the number of GMRES
iterations is due to the interaction of the right-hand sides with the preconditioned
system matrices. Although this interaction can be crucial for GMRES behavior,
see [24, Sec. 5.7.5], in our case the right-hand side vectors are coming from (2.5) and
as such we expect these to vary smoothly across the Runge-Kutta stages. In other
words, we do not expect large changes between the average number of preconditioned
GMRES iterations for (3.4) and the number of preconditioned GMRES iterations
for (3.7).

Since the systems in (3.6) and (3.7) are complex, we use a complex GMRES solver.
The block triangular solves in (3.6) are also performed in complex arithmetic. Only
the calls to the AMG or SuperLU solvers are done in real arithmetic, which is possible
because d.vg is real. Solving a linear system with a real matrix but complex right-hand
side can be done with two real-valued solves, one for the real and one for the imaginary
part. We could also use a real-valued GMRES by explicitly solving for the real and
complex parts of K. A complex system Az = b or (R(A) +iS(A))(R(z) + iS(x)) =
R(b) 4+ i3(b) can be solved using real arithmetic by solving the system

e 30w 3] = 3]

However, since the system is now twice as large, we expected this system to have
slower solution process (in terms of the overall runtime) and haven’t investigated this
direction any further.

4. Numerical Results. In our experiments, we use first-order Lagrange basis
functions (p = 1) on a 2D triangular mesh for Q = [0, 1]* with the standard Galerkin fi-
nite elements spatial discretization and the initial condition f(x) = cos(mz1) cos(mzs).

This manuscript is for review purposes only.
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EFFICIENT SOLUTION OF FULLY IRK METHODS FOR LINEAR WAVE EQUATION 9

The temporal step size h; was chosen to balance spatial and temporal errors, depend-
ing on the spatial step size h. Specifically, for an s-stage IRK method of order g,

we set hy = hpTH, where p is the degree of the basis polynomials. For example, for
the wave equation with s-stage Gauss—Legendre methods of order ¢ = 2s, we chose
hy =hs.

We use the method of manufactured solutions to facilitate the calculation of
relative errors. The Sundance package [26] from the Trilinos project [41] is used to
generate the mass and stiffness matrices required for our simulations. Our code is
implemented in python, leveraging open-source packages such as NumPy [43], SciPy
[43], and PyAMG [4]. Specifically, we use the Ruge-Stiiben algebraic multigrid solver
from the PyAMG library to perform our experiments efficiently. Additionally, we
used MATLAB for creating a few of the plots.

We compare our method with some of the existing methods [8, 9, 28, 33, 39], where
the original system (2.6) is preconditioned with a block preconditioner P having the
general form

(4.1) P=I,9M - hA® B,

where A forms a good preconditioner of the Butcher coefficient matrix A — we consider
three specific choices:

e LD preconditioner (Prp) [33]: A = LD, where A = LDU with L unit
lower triangular, D diagonal and U unit upper triangular matrices.

e r-optimal preconditioner (P,) [39]: A = L, with L chosen to minimize
k(L™ A) over the space of lower triangular matrices. We carry out the opti-
mization using the Nelder-Mead optimization algorithm [31].

e Triangular approximate inverse preconditioner (Pray): A = L, with
L chosen to minimize HL_IA -1 ||2 over the space of lower triangular matri-
ces.

The rk-optimal and LD preconditioners were initially studied in the context of para-
bolic equations [28, 39, 33], but have also been shown to be effective when applied to
the wave equation with Runge-Kutta—Nystrom timestepping [9, 8].

We propose the Pray preconditioner as a new alternative to P, with a similar
idea but a simpler implementation — minimization of HL_lA -1 H2 amounts to solving
s small least-squares problems as opposed to the minimization of n(L_lA), which
requires an optimization algorithm such as Nelder-Mead.

4.1. Preconditioner Application. Since the preconditioners Prp,P, and
Prar take A as a lower triangular matrix, we put A = [l;;], with {;; = 0 for ¢ < j.
The application of these preconditioners amounts to solving the system

M — htlllB B U1 b1
—htlng M — htlng V2 b2

(4.2) : : = .|
—hils1 B M — hylssB Vs bs

which we do with a single block forward substitution, requiring s subsolves, namely

i—1
(43) (M - htliiB)vi = bz + Z htlijB’Uj .

j=1

This manuscript is for review purposes only.
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10 A. RANI, P. GHYSELS, V. HOWLE, K. LONG AND M. OUTRATA

We again take advantage of the 2 x 2 block structure of M — hyl;; B, i.e., having the
block LU factorization

MhtlnB{ M 0 2EHI —htliil}'

hiliy B M + h212, 0 I
We solve
M 0 I =il |
hilyE M+ h2ZE 0 I Lo

using block forward and backward substitution. This way, each solve requires one
solve with M and one solve with M + h?I%E and analogously to the approaches

Péyl, Pé{!l we replace the solves with M with two iterations of Gauss-Seidel and the
solves with M + h2I% E with a single V-cycle of AMG.

tYi1

Altogether, the preconditioners Prp, Py, and Pray require s AMG setups initially
and then s V-cycles and 2s Gauss-Seidel iterations per application (we assume that
the Gauss-Seidel set-up time is negligible compared to that of the AMG). For both
Péyl, Péél, we can do with only 1 AMG setup and then [s/2] V-cycles and 2s Gauss-
Seidel iterations per application. This comparison invites the idea of replacing the
AMG V-cycles for the s different matrices M +h?1% E with an averaged AMG V-cycle
for M + hfl?ng to obtain both, the speed-up in the set-up phase as well as improved
arithmetic density, analogously to Pé;fll. Since we consider the above preconditioners
mainly for the sake of comparison, we do not explore this direction any further here
but this seems to us as an interesting option for improving the efficiency of these

preconditioners.

4.2. Analysis of the preconditioners. To predict a GMRES preconditioner
quality we commonly try to calculate or bound some key properties of the precondi-
tioned system, e.g., its spectrum (and its clustering) and conditioning of its eigenbasis,
its field of values (FoV) or its pseudospectrum. A favorable results, such as these being
well-separated from the origin and/or tightly clustered can provide valuable insights
into the convergence behavior of GMRES, see [24, Section 5.7]. Here we illustrate
some of these properties for the preconditioned system with all of the considered
preconditioners, with the mesh size® h = 273,

First, in Figure 4.1, we show the “benchmark” eigenvalue and FoV plots for both
the unpreconditioned and the left preconditioned systems using Prp, P, and Prar
and constructing the preconditioners exactly. Notably, the eigenvalues of each of
the preconditioned systems are much better separated from the origin comapred to
the unpreconditioned case, with Pr 45 achieving the most favorable properties of the
ones plotted. However, increasing the number of stages results in the a shift of the
eigenvalues closer to the origin and fast expansion of FoV.

Next, we examine the analogous quantities also for Péyl and Péél. As in sec-
tion 3.1, we only consider the systems associated with the eigenvalues d; of A~ with
non-negative imaginary part, see (3.4).

As for the preconditioners, we recall the block LU factorization of Ag,,;[#4] in (3.4)
and replace d; with dae in the diagonal blocks of the block lower triangular factor.

$Note that later we show performance results for h = 279, Both computation and visualization
of spectra and FoV is demanding for fine mesh size (and larger s). The effect of the mesh scaling
has been considered in [15, 11] for parabolic problems and can be addressed in similarly also here.
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Fig. 4.1: Eigenvalue and FoV plots of the left-preconditioned 2D wave problem with
h = 273 using the Gauss-Legendre IRK method for s = 3 (a) and s = 5 (b), precondi-
tioned with Py, Pr.p and Pr4;. The spectrum of the unpreconditioned systems in red
are shown together with the spectrum of the preconditioned systems as a reference.
Preconditioners are constructed exactly. We note that the FoV for the preconditioned
systems for s = 5 all contain the rectangle (—2,4) x (—3i, 37) and as such are not vis-
ible in the plot.

Multiplying back, the exact preconditioner for the i-th system becomes

M _h
(4.4) 2 dzi fori=1 F—‘
: h 42— d2, : =L |3
jE hf(dngag>E+M
7 iavg

In Figure 4.2 we show the spectra and FoV with the preconditioners constructed
exactly (i.e., corresponding to (4.4)) and in Figure 4.3 we consider the “realistic”
preconditioners, where the block-solves are replaced with two Gauss-Seidel iterations
or one AMG V-cycle, see section 3.1.

In both cases, the eigenvalues of the preconditioned systems Pg;lAsyl [i7] are
well separated away from zero for ¢ = 1,...,[s/2]. While the plots in Figures 4.2
and 4.3 resemble each other closely, differences can be observed, e.g., by comparing
the subplots for s = 2 and s = 4. We also see that the FoV plots tell a similar
story with respect to increasing s — larger s results in larger FoVs that are, moreover,
closer to the origin and thereby worsening the classical GMRES bound based on FoVs.
Nonetheless, we see a quantitative improvement in the FoV compared to the other
preconditioners.

Finally, we present the condition numbers of the eigenbasis of the preconditioned
systems in Table 4.1. First, we see that for both Péyl and Péél we obtain truly
well-conditioned eigenbasis, suggesting that the eigenvalues indeed govern the GM-
RES convergence, i.e., the study and understanding of Figure 4.2 becomes decisive.
Seemingly, the same cannot be said for Prp, P, and Pray, looking at the numbers
before parenthesis in Table 4.1. However, this can be ascribed to large extend to
the singularity of E (due to the Neumann BC in (2.2)). As this results in only one
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s | Prp P.. Prar Péyl Pé{,z
2| 7.7e+7 (1.4e+2) 5.8e+7 (1.1e+2) 7.2e+7 (1.3e+2) [3.6] 3.6
3 82047 (2.1642) 8.1et7 (2.1e+2) 65017 (L.7e12) [3.6, 3.9 3.9
1| 7.9e+7 (2.4e42) 12648 (3.80+2) 8.0c+7 (2.4e+2) (3.6, 3.7 3.7
5 1.0048 (3.6042) 1.4048 (4.70+2) 1.6018 (5.4012) [3.6,3.6, 3.5 3.6

Table 4.1: We show the condition numbers of the eigenbasis of the preconditioned
systems (for the exact preconditioners) for different s with the mesh size h = 273
For Pr.p, P, and Pra; we observed that the singularity of E is the main culprit and we
also show (in parantheses) the conditioning when this is artificially removed. For Péyl
we present the conditioning of the eigenbasis for each of the [s/2] systems. We want
to emphasize that to obtain these results accurately, requires a careful reformulation
of the calculation, refer to the text for more details.

eigenvector that corresponds to the zero eigenvalue, we can look on the conditioning
of the eigenbasis without this mode (corresponding to a constant function) and we see
a significant improvement (shown in the parentheses in Table 4.1). Let us note that
the results in Table 4.1 are not identical to numbers we obtain when we compute the
condition numbers of the eigenbasis naively, using routines solve(), eig(), cond()
from the library numpy.linalg (or their other equivalents) — quite on the contrary.
Due to the high density of the eigenvalues shown in Figures 4.1-4.3, the standard
approach is susceptible to numerical instabilities and gives (sometimes hugely) inac-
curate results. However, these issues can be addressed by a direct reformulation to
obtain correct values.!

4.3. Performance Comparison: Wave Equation. In this section, we com-
pare the performance of the different preconditioning methodologies analyzed in the
previous section. Our comparison focuses on AMG setup time, total GMRES solve
time, GMRES iteration counts. We also verify the code and its calculations using the
method of manufactured solutions, see [35] and the references therein.

Number of solver calls: For Péyl, we require one real AMG set-up (as discussed
in Section 3.1) and each preconditioner application requires two V-cycles (since the
right-hand side is complex-valued we compute separately the real and the imaginary
parts) and two iterations of Gauss-Seidel (replacing the solve with M with two Gauss-
Seidel iterations). Denoting the number of GMRES iteration for each of the [s/2]
systems by itrq,...,itrrs 27, the total number of AMG V-cycles and Gauss-Seidel
calls becomes

[5/2] [5/2]
# AMG V-cycles : Z 2 x itry, # Gauss-Seidel iterations : Z 2 x itr;.
j=1 j=1

IThese statements are not obvious but can be derived using the framework in [15] and will be
explained and proved in detail in the upcoming manuscript focusing on the spectral analysis of these
preconditioners. However we feel that these should be mentioned here to show the full picture of the
preconditioned systems for GMRES, and eigenvalues alone cannot do that.

In [11] and [15], the authors propose new techniques for spectral analysis of similar systems arising
from parabolic PDEs — these can be also adapted to the hyperbolic case as well as extended for the
FoVs and pseudospectral GMRES bounds. This is already a work in progress and will be treated
separately in our upcoming paper, together with theoretical justification of the above observations.
Next, we discuss the resulting GMRES performance.

This manuscript is for review purposes only.



EFFICIENT SOLUTION OF FULLY IRK METHODS FOR LINEAR WAVE EQUATION 13

2-st
075 stage 075
0501 050
0.25 0.25
0.00 1 0.00
e e
8 -025 & -02s
% 0.50 1 g 0.50
g g
-0.754 -0.75 A Asyl11]) N(Asy[22])
1004 C100] @ APh)TAsILL]) o APh,) As,l22])
N Asy[11]) Asy[11]) Asyl[11]) Asy[22])
I e AP AsM11]) — (P Usyl11] I () sl — (P lasyl22]
~1.50 -— . . . . . . . . ~1.50 - . . . . . . . .
04 -02 00 02 04 06 08 10 12 04 -02 00 02 04 06 08 10 12
Real Real
(a) (b)
-st
075 075 5-stage
0.501 0.50
025 1 025
0.00 1 0.00
e fa
E =0.251 E -0.25
A 11 22
%—050* %—0.50 (Asy[11]) Asyl[22])
E E o A((Psy) sy [11]) — (Psy) M Asyl22]
~0.75 NAsy[11]) NAsy[22]) —0.75 Asy[11]) N(Asy[33])
1004 @ AP tAsul11]) o A(Psy) 1 Asyl22]) _100{ — (P&t Asul11] M(Psy,) 1 Asyl33])
Asyl11]) Asy[22]) N(Asy[22]) Asy[33])
[ f— (P, )L Asyl11] — (Pey) Msyil22] B A(Ps,)) "  Asyil22]) (Pg,) 7 45331
-150

-1.50

-0.4

70‘.2 DJD 0.2 0.4 0‘,6
Real

(c)

0.8 1.0 12

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 12
Real

(d)

Fig. 4.2: Eigenvalue and FoV plots of Ag,[ii] and (Péyl)_lAsyl[ii} of a 2D wave
equation with h = 273 using Gauss Legendre for s = 2 to s = 5. Preconditioners are
constructed exactly.

For the preconditioners Prp, P, and Pray, we require s real AMG set-ups (as
discussed in Section 3.1) and each preconditioner application requires s AMG V-
cycles and 2s Gauss-Seidel iterations. Denoting the number of GMRES iterations by
itrrp, itr, and itrp a7, the total number of AMG V-cycles and Gauss-Seidel iterations
for each of these preconditioners becomes

# AMG V-cycles : s xitrpp . rar, # Gauss-Seidel iterations : 2s X itrpp . 7ar-

Figure 4.4b compares the total number of AMG V-cycles required by various
preconditioners for the mesh size h = 27°. For s > 4, Péyl requires fewer V-cycles
compared to the other preconditioners.

Runtime: In order to compare the runtime of the preconditioners, we clock the
set-up times and the times until GMRES converges to the relative residual smaller
than le — 8! with randomized right-hand side vectors (of appropriate sizes) for the

I As we focus here on comparing the preconditioners, we set identical GMRES tolerance for all
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Fig. 4.3: Eigenvalue and FoV plots of Ag,[ii] and (Péyl)_lAsyl[ii} of a 2D wave
equation with & = 273 using GaussLegendre for s = 2 to s = 5. The preconditioners
use instead of exact solves 2 iterations of Gauss-Seidel and 1 AMG V-cycle.

preconditioned systems 73;[1,,4, PLA, P{};IA and for the approach Péyl (adding
together all of the [s/2] system timings).

In Figure 4.4a, we compare both the solve time (cross pattern) and AMG setup
time (solid color) for different preconditioners for various number of stages for the
mesh size h = 27 (finest considered). We begin to notice differences in performance
for s = 3, while for s =5 ”Péyl showcases a significant advantage, being twice as fast
as the next best method, Pra;.

In Figure 4.5, we again present both the solve time (cross pattern) and AMG
setup time (solid color) for different preconditioners, now with fixed number of stages
(s = 5) and for refining mesh. The Péyl approach consistently outperforms the other
preconditioners throughout the refinement process, again requiring only half of the
total runtime of the next best method, Pray.

mesh sizes but note that in practice we usually aim for balancing the GMRES tolerance against the
(expected) discretization error, similarly to balancing the temporal and spatial discretization errors.
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Fig. 4.4: Comparison of the Sylvester formulation Péyl (separate [s/2] GMRES sys-

tems) with other preconditioners for h = 279 corresponding to one preconditioned
GMRES call (or to the sum of the [s/2] calls for ngyl), including the set-up time.

P, AMG setup [ P, AMG setup
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Fig. 4.5: Runtime comparisons (including the set-up time) in linear (a) and logarith-
mic (right) scale of the Sylvester formulation Péyl (separate [s/2] GMRES systems)
with other preconditioners as mesh refines for s = 5. The timings correspond to one
preconditioned GMRES call (or to the sum of the [s/2] calls for Pg,).

The superior performance of ’Péyl can be attributed to its efficient handling of the
Sylvester reformulation, which reduces the number of AMG V-cycles needed for each
subsolve. This efficiency becomes more pronounced as the stage number increases
and the mesh is refined, highlighting the robustness and scalability of ngyl. On the
other hand, preconditioners such as Prp and P, require additional AMG V-cycles
and hence more time, especially for finer meshes and/or larger s. Comprehensive
tabulated data, including solve time, AMG setup time, and iteration count, can be
found in [34].

Scalability: In Figure 4.6, we present the scalability of ngyl with respect to
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Fig. 4.6: Linear scaling of the solution time of Péyl with respect to N (the number of
mesh points) and s is shown in (a) and (b) respectively. In (b), to see the linear scaling
in s, we divide the runtime by s, and compare with Pr4;. The timings correspond to
one preconditioned GMRES call (or to the sum of the [s/2] calls for ’Pfgyl) without
the AMG set-up time.

N (the number of mesh points, N = 2(1 + h,)?) and s (the number of stages)
corresponding to one preconditioned GMRES call (or to the sum of the [s/2,] calls
for Péyl). Figure 4.6a demonstrates the linear scalability of ngl in terms of N,
indicating that Sylvester preconditioning achieves optimal scaling with mesh size,
exhibiting a runtime of O(N).

Our method is highly scalable, showing a time complexity of O(sN) compared to
O(s%N) for other preconditioners, as illustrated in Figure 4.6b. To demonstrate this,
we consider the time per stage and compare it with Pr 45, shown in green, which has
a time complexity of O(s?N). We expect the Péyl plots (in orange in Figure 4.6b)
corresponding to different times per stage to overlap, which is consistent with our
observations. In contrast, the Pra; plots exhibit vertical shifts as the stage number
increases, confirming the expected O(s?N) complexity.

However, it is worth noting that due to the transformation with W, our method
technically remains O(s?N). Despite this, the transformation step is highly efficient
and does not dominate the overall timing, ensuring that Péyl remains an optimal and
scalable preconditioning strategy.

'Pg’;l approach: So far, we have discussed the performance of Péyl and compared
it with other preconditioners P, Pr,p and Prar. Next we will discuss the performance
of ’Péél approach, based on construction of a diagonal block matrix, referred to as
As,[ii], see (3.4). This allows us to batch linear systems solves with M — (h;/dgug)*E
during the preconditioner application into a single solve applied to [s/2, ] right-hand

sides as well as also harvest the gains of lower set-up times of Péyl.

Figure 4.7 shows the runtime performance of ’Péél compared with other precon-

ditioners (Prp, Px, and Prar) using two different solvers for the problems with the
system matrices M — (hy/davg)>E and M — hil3;E — one AMG V-cycle in Figure 4.7a
or the SuperLU in Figure 4.7b. As above, the cross pattern represents the solve time,
while the solid color indicates the AMG /SuperLU setup time.
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Fig. 4.7: Runtime of the Sylvester formulation Péél (GMRES applied to (3.7)) using
(a) AMG (without multiple right-hand side application) and (b) SuperLU (with mul-
tiple right-hand side application), with other preconditioners with h = 279 for one
preconditioned GMRES call.

The reason for comparing these two solvers is the following: while generally slower
for large systems and more expensive in set-up time SuperLU allows for multiple right-
hand side whereas the PyAMG implementation of AMG V-cycle does not (using a
different AMG implementation that does allow for multiple right-hand sides, e.g., the
hypre package, is part of the ongoing work). Hence, the possible gains from batching
the solves together can be inferred by comparing these two.

In Figure 4.7a, we see that Péél performs well compared to the other precondi-
tioners when using AMG for the subsolve, for s > 4. In Figure 4.7b, Péél consistently
outperforms the other preconditioners in terms of runtime when using SuperLU for
the subsolve.

Although the ability to combine operations efficiently is theoretically crucial for
maintaining scalability and reducing computational overhead, and particularly so in
large-scale simulations, we have seen only modest gains in the runtime improvement
of Pé;l compared to the other preconditioners when comparing SuperLU and the
AMG. Naturally, the set-up time improvement is decisive but that is to be expected,
especially for larger systems, such as those for s = 4,5. That being said, we believe
that further investigation and code improvement in the direction of the ’Pé;l approach
could and will lead to meaningful improvements. Especially as we continue to refine
our preconditioning strategies, integrating more advanced and apt software solutions
will be essential for achieving optimal performance.

GMRES iterations: Figure 4.8 compares the iteration counts of Prp, P,
Prar, ’Péyl, and Péél. We see that the total number of iterations for ’Péél is lower
than the sum of the number of iterations for ’Péyl for all = 1,...,s. Admittedly,

this is not a fair comparison, since each iteration for ”Péél is more expensive than
those for Péyl**. Nonetheless, Figure 4.8 highlights our experience, where only one

**In fact, even the GMRES iterations for the different systems with Péyl can have different costs
— if s is odd, then one of the systems will be real. This highlights that the timings might give a
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Fig. 4.8: The number of preconditioned GMRES iterations for a single GMRES call
(or for each of the [s/2] calls for Péyl) as a function of the mesh-size h,.
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Fig. 4.9: Mesh dependence of the relative errors for the generalized wave equation
with the parameters choice [e1,€2,€3] = [0.75,0,0] (a) and the parameters choice
[e1, €2, €3] = [0.75,0.75,0.375] (b). The errors are O (h2) at all stages; recall that the
timestep h; was chosen so that hﬁ“ = hfs accuracy, so we are obtaining the expected
convergence rate in both space and time with no order reduction.

of the ’Pfgyl systems required comparable number of GMRES iterations to the other
considered preconditioners while the rest of the systems converged in significantly
fewer iterations.

Computation verification: To verify the computed solutions and the code,
we look at the discrete L? norm of the relative errors in space along the entire time-
stepping process and we considered the largest one, i.e., we focused on the discrete L™
norm in time of the discrete L? norms in space. The GMRES solve(s) were run at each
timestep until the relative residual decreased below le — 8. The (relative) L? norm

better idea of the efficiency than the iteration counts in our set-up.
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of the sptaial errors are generally of similar magnitude and we have not observed any
order reduction in these as the timestepping progressed. As the wave equation in the
simple form plausibly doesn’t pose enough of a challenge, we carried out the same ex-
periments also for the generalized wave equation problem described in Section 4.4 and
we show the results in Figure 4.9a (for the parameters choice [e1, €2, €3] = [0.75,0, 0])
and Figure 4.9b (for the parameters choice [e1, €2, €3] = [0.75,0.75,0.375]). Same as
for the simple wave equation, we have not observed any order reduction.

In conclusion, while Péyl already demonstrates excellent performance, there is

potential for improving the performance of Péél with AMG if we adopt software that
supports combined operations. This adaptation would, based on our experience, lead

to meaningful runtime reductions, see [25].

4.4. Performance Comparison: Generalized settings. We consider a gen-
eralized version of (2.2), namely

ug =V - (k(x)Vu) — B(x)u + b(x, ), in Q x (0,7,
(4.5) n-Vu=0, on 012,
u(x,0) = P(x) in Q,
ut(x,0) =0 in €,

with the particular choices

k() =1+ € cos (\@xl + \x/%) , B(x) =€+ ezsin <\% - \/5552) ,

Y(x) = cos(zq) cos(2z2),

where = [r1,72]" € Q = [0,7]? and the coefficients are constrained as |e;| < 1,
lea] > 0, |es| < |ea| so that both k(x) and G(x) are positive functions. We again use
the method of manufactured solutions and take b(x,t) so that the function u(x,t) :=
(x) cos(t) satisfies the equation (4.5). The transformation and weak formulation
carry through analogously to Section 2, arriving at the same problem (2.6), only now
the stiffness matrix entries are given as

E, = /Q KVos -V, + Bbidyda,

instead of (2.4).

In our experience, the results for this problem generally follow the key features
pointed out in the previous section. We consider two particular setting:

The space-variable wave equation We take [e1, €2, €3] = [0.75,0,0] so that
B(x) = 0. We show the runtimes and AMG V-cycles count in Figure 4.10 and their
scaling in Figures 4.11 and 4.12.

The Klein-Gordon equation We take [e1, €2, €3] = [0.75,0.75,0.375]. We show
the runtimes in Figure 4.13 and their scaling in Figures 4.14 and 4.15.

5. Conclusion. We have presented a reformulation of the large, structured
linear system from the IRK time integration of hyperbolic PDEs as an equivalent
Sylvester matrix equation. We then reduced the problem to a series of s separate
smaller linear systems, which we can solve efficiently with preconditioned GMRES.
The resulting, new method stands proves to be twice as fast as other existing ap-
proaches when increasing the number of Runge-Kutta stages and refining the mesh,
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Fig. 4.10: Comparison of the Sylvester formulation ’Péyl (separate [s/2] GMRES

systems) with other preconditioners for h = 279, corresponding to one preconditioned
GMRES call (or to the sum of the [s/2] calls for ’Péyl), including the set-up time.
The parameters are taken as [e1, €2, €3] = [0.75,0,0].
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Fig. 4.11: Runtime comparisons (including the set-up time) in linear (a) and logarith-
mic (right) scale of the Sylvester formulation Péyl (separate [s/2] GMRES systems)
with other preconditioners as mesh refines for s = 5. The timings correspond to one
preconditioned GMRES call (or to the sum of the [s/2] calls for Péyl). The param-
eters are taken as [ey, €2, €3] = [0.75,0, 0].

while requiring fewer AMG V-cycles. Our experiments show that our method outper-
forms other commonly used preconditioners, with the improvement becoming more
pronounced as s is increased and persistently doing better, twice as fast with refined
spatial discretization.

The preconditioner Péyl reduces both the solve time but also the AMG setup
time, compared to the other preconditioenrs. Notably, Péyl requires only one AMG
setup, while the other preconditioners require s set-ups, making also the set-up phase
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Fig. 4.12: Linear scaling of the solution time of ’Péyl with respect to N (the number of
mesh points) and s is shown in (a) and (b) respectively. In (b), to see the linear scaling
in s, we divide the runtime by s, and compare with Pr4;. The timings correspond to
one preconditioned GMRES call (or to the sum of the [s/2] calls for Péyl) without
the AMG set-up time. The parameters are taken as [e1, €2, €3] = [0.75,0,0].
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Fig. 4.13: Comparison of the Sylvester formulation Péyl (separate [s/2] GMRES
systems) with other preconditioners for h = 27°, corresponding to one preconditioned
GMRES call (or to the sum of the [s/2] calls for Péyl), including the set-up time.
The parameters are taken as [e;, €2, €3] = [0.75,0.75,0.375] .

notably more efficient. Although Pé{/l did not perform to its full potential in its
current implementation, we explained its potential based on improved efficiency of
combined matrix-vector multiplication operations.

We are considering integrating our proposed method in MFEM (Modular Finite
Element Method) [2, 29] and/or SUNDIALS [19], and we plan to extend the framework
to other preconditioners and other time-dependent PDEs. In order to take full advan-
tage of the new formulation, we intend to use the hypre algebraic multigrid solver [21]
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Fig. 4.14: Runtime comparisons (including the set-up time) in linear (a) and logarith-
mic (right) scale of the Sylvester formulation Pé{yl (separate [s/2] GMRES systems)
with other preconditioners as mesh refines for s = 5. The timings correspond to one
preconditioned GMRES call (or to the sum of the [s/2] calls for Péyl). The param-
eters are taken as [e, €2, €3] = [0.75,0.75,0.375] .
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Fig. 4.15: Linear scaling of the solution time of ngl with respect to N (the number of
mesh points) and s is shown in (a) and (b) respectively. In (b), to see the linear scaling
in s, we divide the runtime by s, and compare with Pr 7. The timings correspond to
one preconditioned GMRES call (or to the sum of the [s/2] calls for Péyl) without
the set-up time. The parameters are taken as [ey, €2, €3] = [0.75,0.75,0.375] .

instead of pyAMG as it supports multiple right-hand side vectors. Alternatively, we
will look at using the STRUMPACK (7] sparse solver and preconditioning library.
The STRUMPACK preconditioners are based on sparse LU factorization with rank-
structured compression and can achieve near-linear complexity for a range of PDE
problems, and support multiple right-hand sides. The STRUMPACK preconditioner
accuracy can be tuned with the low-rank compression tolerance, offering a trade-off
between compression tolerance (and thus set-up costs) and the approximation accu-
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racy (presumably leading to a better preconditioner and fewer GMRES iterations).
Having many time steps further emphasizes the importance of this trade-off. We also
plan to study extensions to the non-linear case. We also continue investigating the
field of values and spectral analysis as part of our ongoing research project.

To conclude, Péyl has clearly outperformed the other considered preconditioners

for the considered problems, especially at higher stages and with finer mesh sizes. The
results indicate that continuing to develop and integrate advanced preconditioning
techniques can make these methods even more efficient and scalable for large-scale
computational problems.
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