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Abstract. We focus on time integration of time-dependent linear hyperbolic PDEs, where5
implicit Runge–Kutta (IRK) time stepping is an increasingly popular technique. However, this6
approach gives rise to linear block systems with a Kronecker product structure, involving the Butcher7
table and the mass and stiffness matrices. Taking the wave equation as the canonical example, the8
system arising from IRK time stepping is highly ill-conditioned but we can exploit the block structure.9
If N is the number of degrees of freedom for the discretization of the Laplace operator, then the10
resulting system matrix is a block s× s matrix where each block is of size O(N)×O(N), and s is the11
number of IRK stages. We reformulate the large O(Ns)× O(Ns) block structured linear system as12
a Sylvester matrix equation. This leads to s separate systems of order O(N)×O(N), these smaller13
systems are efficiently handled with the subsolves replaced by a single AMG V-cycle. We demonstrate14
the effectiveness of our approach on a 2D wave problems. Our experiments show that our approach15
not only reduces runtime but also requires fewer AMG V-cycles compared to traditional methods. As16
the number of Runge–Kutta stages increases and the mesh is refined, the Sylvester approach proves17
to be at least twice as fast as other existing methods, while also requiring fewer AMG V-cycles. We18
also introduce a block lower triangular preconditioner based on minimization of ∥L−1A − I∥2 over19
the lower triangular matrices L (A being the Butcher table), which improves on an existing method20
based on minimization of κ(L−1A).21

Key words. Preconditioning, Time Integrator, Implicit Runge–Kutta Methods, Hyperbolic22
PDEs23

1. Introduction. Explicit time steppers are a popular choice for hyperbolic24

PDEs but they put constraints on the time step. As we dive into scientific model-25

ing and simulation, we encounter stiff systems arising from any spatial discretization26

(FEM, FDM, spectral, etc.) of the given hyperbolic/parabolic PDE. Accurately in-27

tegrating these stiff equations demands very small time steps or the use of uncondi-28

tionally stable time integrators. Implicit Runge–Kutta (IRK) methods stand out for29

handling such challenges as they avoid the Dahlquist barrier [10], enabling them to30

achieve higher-order accuracy without limitations. IRK methods, known for their sta-31

bility and high order, have been less utilized for PDEs due to the challenge of handling32

large, strongly coupled linear systems. Recently, we have seen a renewed interest in33

tackling some of these challenges, focusing both on the practical implementation (see,34

among others, [1, 3, 9, 13, 22, 30, 32, 33, 38], as well as on the analysis (see, among35

others, [11, 14, 15]).36

In [9, 28, 33, 39], the preconditioners introduced for these large systems are based37

on the diagonal or (more often) triangular approximation of the Butcher matrix A38

or its factors, aiming to overcome challenges associated with stage-coupled systems39

and to improve the scalability of the solution process. For an s-stage Runge–Kutta40

scheme and a spatial operator discretized with N degrees of freedom, the resulting41
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linear system of stage unknowns is of size O(sN)×O(sN). Triangular approximation42

of the Butcher table leads to a block triangular linear system with s block-rows and43

block-columns with blocks of size O(N), which can be solved using forward/backward44

substitution (for lower or upper triangular approximation respectively). This substi-45

tution phase is sequential, but each of the s subsolves can use standard solvers for46

mass and/or stiffness matrices. In this work, we reformulate the large linear system47

as a Sylvester matrix equation. This allows us to use well established linear algebra48

techniques to tackle this problem [36]. We use a transformation based on an eigen-49

decomposition of the inverse transpose of the Butcher matrix to transform the large50

O(sN) system into a block diagonal matrix, resulting in s separate smaller linear51

systems. Similar approaches were already proposed by Butcher [6] and Bickart [5],52

see also [18]. Here we focus on the efficient solution of the resulting shifted linear53

systems and how to deal with the complex arithmetic resulting from the eigende-54

composition. When first introduced in [6], it was argued that this transformation to55

block diagonal form also allows for more parallelism, since the s subsolves can be per-56

formed concurrently. However, in order to exploit this, a costly matrix redistribution57

might be required. We recognize that the s linear systems can be solved efficiently,58

with standard solvers for mass/stiffness matrices, by fusing the matrix-vector prod-59

ucts and the preconditioner applications and exploiting sparse matrix multiplication60

with multiple vectors (sparse matrix times dense matrix), instead of sparse matrix61

times vector multiplication. Due to its low arithmetic intensity, sparse matrix-vector62

multiplication is typically memory bandwidth limited. The sparse matrix times dense63

matrix kernel has a much higher arithmetic intensity — increasing with the number64

of vectors/stages s— and can achieve much higher performance on modern hardware.65

This is nicely illustrated by the roofline model [45]. Likewise, the preconditioner can66

be applied to multiple vectors at once. Unfortunately, not all state-of-the-art precon-67

ditioners support application to multiple vectors at once. Most sparse direct solvers,68

including SuperLU Dist [23] do support this feature, but for instance pyAMG [4] does69

not.70

A novel preconditioning approach for IRK systems was introduced in [38], with a71

follow-up paper [37] describing the non-linear setting. We have not yet compared our72

Sylvester reformulation against their approach; this comparison will be examined in73

a forthcoming paper.74

Our main contributions in this work are:75

• We show how the large block-structured linear systems from IRK methods76

can be reformulated as a Sylvester matrix equation, which can be solved with77

standard linear algebra techniques.78

• We show how to solve the resulting set of smaller shifted linear systems effi-79

ciently by exploiting sparse matrix times dense matrix operations.80

• We discuss the issues arising from complex arithmetic required to solve the81

Sylvester equation and how to deal with them in simulation frameworks that82

cannot handle complex-valued subsolves.83

• We also present a new preconditioner based on a lower triangular approxima-84

tion of the Butcher table called PTAI , which improves on those in [39, 33].85

It is easier to implement compared to [33] and outperforms those in [39, 33],86

see section 4 for comparisons of PTAI ,PLD and Pκ.87

We focus on Gauss–Legendre IRK methods because these methods are A-stable,88

have an optimal order-to-stage ratio (order of accuracy 2s) and also preserve quadratic89

invariants of the (spatially discretized) system [17]. An energy functional is conserved90

during the exact evolution of the wave equation, and it is desirable that a numerical91
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EFFICIENT SOLUTION OF FULLY IRK METHODS FOR LINEAR WAVE EQUATION 3

method respect this conservation property. Upon spatial discretization the energy92

functional is approximated by a quadratic form acting on the solution vector. With93

a quadratic invariant preserving method such as Gauss–Legendre or Lobatto IIS, the94

value of this quadratic form remains constant (to within the inevitable roundoff error)95

during timestepping.96

We use the following notation. Matrices are denoted by capital letters, lower case97

letters refer to scalars, while lower case bold letters refer to vectors (except when98

referring to columns of a matrix). The Kronecker product (sometimes called the99

matrix outer product) is denoted by ⊗ and the vec(·) operator, defined as100

(1.1) vec(K) = vec
([
K0 . . .Ks

])
=

K0

...
Ks

 = k ,101

where Ki denotes column i of matrix K, reshapes a matrix to a column vector by102

stacking the columns. Since we store matrices in column-major ordering, this reshap-103

ing can be done without memory copies.104

The remainder of the paper is outlined as follows. In section 2 we recall the general105

s−stage implicit Runge–Kutta method, the Butcher table and the wave equation.106

Section 3 describes the transformation to block diagonal form using the Sylvester107

matrix reformulation and how to solve the resulting shifted linear systems. Section 4108

shows the preconditioner analysis and performance results, including comparison with109

several other preconditioners. Finally, we conclude the paper in section 5.110

2. Implicit Runge–Kutta Time Stepping for the Wave Equation. The111

general s−stage IRK method for u′ = ϕ(t,u) has the form112

un+1 = un + ht

s∑
i=1

biki, with

ki = ϕ
(
tn + ciht,un + ht

s∑
j=1

aijkj

)
, i = 1, · · · , s,

113

which is summarized by the Butcher table114

(2.1)

c1 a11 ... a1s
...

...
. . .

...

cs as1 ... ass

b1 ... bs

=
c A

bT
,115

where A ∈ Rs×s, b ∈ Rs, c ∈ Rs. We use the wave equation116

(2.2)

utt − c2 △ u = b(x, t), in Ω× (0, T ],

n̂ · ∇u = 0, on ∂Ω,

u(x, 0) = f(x), in Ω,

ut(x, 0) = g(x), in Ω,

117

for the exposition of our method and the connected ideas, and explore more general118

setting in Section 4.4. In principle, the derivations below apply to any second-order119
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linear hyperbolic PDE without time-dependent coefficients (even if, e.g., discretized120

with a Runge-Kutta-Nyström method). While the generalization for time-dependent121

coefficients and/or for nonlinear problems is practically important, it goes beyond the122

scope of this manuscript and will be treated in a separate manuscript.123

Denoting ut = v, we introduce the vector w, concatenating u and v, and rewrite124

the above system (2.2) as a first order time dependent PDE125

wt = Bw + b̂, in Ω× (0, T ],

cTw = 0, on ∂Ω,

w(x, 0) = w0(x), in Ω,

126

where w =

(
u
v

)
, B =

(
O I
c2△ O

)
, b̂ =

(
0
b

)
, cT =

(
n̂ · ∇
0

)
and w0 =

(
f
g

)
.127

Converting to weak form and discretizing using the standard finite element setting,128

we get the following linear system129

(2.3) M̄wt(t) = Bw(t) + b(ST )(t),130

where the vector b(ST ) aggregates the source terms stemming from the FEM dis-131

cretization of the original functions b(x, t), f(x) and g(x) in (2.2) and M̄ =

[
M O
O M

]
132

and B =

[
O M
−E O

]
. M and E are the mass and stiffness matrices given as133

(2.4) Mij =

∫
ϕiϕj , Eij =

∫
∇ϕi · ∇ϕj ,134

where {ϕj} are the finite-element basis functions. For the above linear system (2.3),135

we use an IRK method (2.1), obtaining the stage equations136

M̄ki = Bwn + ht

s∑
j=1

aijBkj + b
(ST )
i , i = 1, . . . , s,137

where the vectors b
(ST )
i correspond to evaluations of b(ST ) at the corresponding time-138

points based on the chosen Runge-Kutta method. We rewrite this system using the139

block notation140

(2.5)


M̄ − hta11B −hta12B . . . −hta1sB
−hta21B M̄ − hta22B . . . −hta2sB

...
...

. . .
...

−htas1B −htas2B . . . M̄ − htassB



k1

k2

...
ks

 =


Bwn + b

(ST )
1

Bwn + b
(ST )
2

...

Bwn + b(ST )
s

 ,141

and denote the vector of unknowns in (2.5) as k ∈ R2Ns and the right hand side142

vector as f ∈ R2Ns. Using the Kronecker product notation, we further rewrite (2.5)143

as144

(2.6) Ak = f , with A := Is ⊗ M̄ − htA⊗B.145

Note that we never need to (and essentially never should) form this large 2Ns×146

2Ns system explicitly. Instead, all operations can be written in terms of the stiffness147
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EFFICIENT SOLUTION OF FULLY IRK METHODS FOR LINEAR WAVE EQUATION 5

and mass matrices. For instance, the system matrix in (2.6) can be applied to a vector148

u efficiently by taking linear combinations of the matrix products149

(2.7)
M
[
(u1)1 (u1)2 (u2)1 (u2)2 . . . (us)1 (us)2

]
E
[
(u1)1 (u2)1 . . . (us)1

]
,

150

where ui =
[
(ui)

T
1 (ui)

T
2

]T
, with (ui)1 and (ui)2 both vectors of size N .151

3. Sylvester Matrix Reformulation. In the literature, the original structured152

system in (2.6) is often solved with preconditioned GMRES with a preconditioner of153

the general form P = Is ⊗ M̄ − htÃ ⊗ B [9, 28, 33, 39]. But in our approach, we154

will take advantage of the Sylvester matrix system to break down the problem into155

solving s smaller systems of order 2N×2N . We assume the invertibility of the Butcher156

coefficient matrix A but for the standard methods, such as Gauss–Legendre, Radau157

IA, Radau IIA, and Lobatto IIIC, the Butcher matrices are known to be regular,158

see [18]. Moreover, as mentioned in [18, page 368], the Butcher matrices for the159

Gauss–Legendre IRK methods have s distinct eigenvalues which come in
⌊s
2

⌋
complex160

conjugate pairs and possibly a single real eigenvalue (if s is odd). In particular, the161

matrices are diagonalizable. The diagonalizability of A has been observed numerically162

also for the other IRK methods we listed.163

For the Sylvester matrix reformulation of (2.6), we factor out A⊗IN ∗ and multiply164

both sides by Is ⊗ M̄−1, getting165

(Is ⊗ M̄−1)
(
A−1 ⊗ M̄ − htIs ⊗B

)
(A⊗ I2N )k = (Is ⊗ M̄−1)f166 (

A−1 ⊗ I2N + Is ⊗ B̂
)
(A⊗ I2N )k = f̂167 (

A−1 ⊗ I2N + Is ⊗ B̂
)
k̂ = f̂(3.1)168

where B̂ = −htM̄−1B, k̂ = (A⊗ I2N )k and f̂ =
(
Is ⊗ M̄−1

)
f . Now, the system in169

(3.1) can be reformulated as a Sylvester matrix equation170

B̂K̂ + K̂A−T = F̂(3.2)171

where, vec(K̂) = k̂, and vec(F̂ ) = f̂ [42]. Considering the eigenvalue decomposition172

of the matrix A−T
173

A−T =WDW−1, with D = diag(d1, d2, . . . , ds),174

(3.1) then becomes175

B̂K̂ + K̂
(
WDW−1

)
= F̂176

B̂K̂W + K̂WD = F̂W177

B̂K̄ + K̄D = F̄ ,178

where K̄ = K̂W and F̄ = F̂W . Since D is diagonal, this is simply a set of shifted179

∗This idea was first introduced by Butcher in [6].
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6 A. RANI, P. GHYSELS, V. HOWLE, K. LONG AND M. OUTRATA

linear systems180 (
B̂ + diI

)
(K̄)i = (F̄ )i, i = 1, . . . , s181 (

−htM̄−1B + diI
)
(K̄)i = (F̂W )i182 (

−htB + diM̄
)
(K̄)i = (M̄F̂W )i183 (

−htB + diM̄
)
(K̄)i = (M̄M̄−1FW )i184 (

M̄ − ht
di
B

)
(K̄)i =

1

di
(FW )i .(3.3)185

As the eigenpairs of A−T all come in complex conjugate pairs (and an extra real186

eigenpair if s is odd), we can order them so that187

d2i = conj(d2i−1) , i = 1, 2, . . . ,
⌊s
2

⌋
,188

and since B and M̄ are real, we have189

M̄ − ht
d2i

B = M̄ − ht
conj(d2i−1)

B = conj
(
M̄ − ht

d2i−1
B
)
, i = 1, 2, . . . ,

⌊s
2

⌋
,190

and similarly191

(FW )2i = conj((FW )2i−1), i = 1, 2, . . . ,
⌊s
2

⌋
.192

In words, computing the solution of the (2i − 1)-th system, its complex conjugation193

gives us the solution of the 2i-th system, i.e., we only need to solve ⌈s/2⌉ out of the s194

systems in (3.3). We shall take these corresponding to di with non-negative imaginary195

parts and refer to these as196

(3.4) ASyl[ii](K̄)i =
1

di
(FW )i, i = 1, 2, . . . ,

⌈s
2

⌉
,197

where ASyl denotes a 2N ⌈s/2⌉ × 2N ⌈s/2⌉ block diagonal system with the (i, i) di-198

agonal block denoted as ASyl[ii] = M̄ − ht
di
B. We discuss the solution of these in199

Section 3.1. Finally, we need to compute K̂ = K̄W−1, then k̂ = vec(K̂), and200

(3.5) k = (A⊗ I2N )
−1

k̂ =
(
A−1 ⊗ I2N

)
vec(K̂) = vec(K̂A−T ) = vec(K̄DW−1) .201

3.1. Solving Shifted Linear Systems. In this section we discuss how to solve202

the ⌈s/2⌉ shifted linear systems from (3.3). We discuss two alternative approaches. In203

the first method, denoted as PI
Syl, the shifted systems are each solved separately with204

preconditioned GMRES. In the alternative approach, denoted as PII
Syl, the shifted205

systems are solved simultaneously with a single call to (preconditioned) GMRES.206

The PI
Syl approach. To solve each of the shifted linear systems separately, we use207

preconditioned GMRES, with the preconditioner based on the block LU decomposi-208

tion of M̄ − ht
di
B,209

(3.6) M̄ − ht
di
B =

 M O

ht
di
E M +

(
ht
di

)2

E

 I −ht
di
I

O I

 , i = 1, . . . , ⌈s/2⌉ .210

This manuscript is for review purposes only.



EFFICIENT SOLUTION OF FULLY IRK METHODS FOR LINEAR WAVE EQUATION 7

Proceeding with the standard block forward and backward substitution based on (3.6)211

requires a system solve with M and M + (ht/di)
2E. However, as we aim for a212

preconditioner, these solves can and should be only approximate. Also, as di ∈ C, the213

system solve with M + (ht/di)
2E is complex-valued.214

Approximating the solve with M is the easier of the two tasks as it is a real215

matrix identical for all of the systems in (3.4). We considered replacing the solve216

with M with one or two iterations of the Gauss–Seidel method or with one V-cycle217

of AMG. Although, the use of two (one) iterations of Gauss–Seidel results in slightly218

(somewhat) larger number of GMRES iterations than with one AMG V-cycle, we219

observed faster runtimes and thus we stick to using two iterations of Gauss–Seidel as220

the approximate solver† for M .221

Considering M +(ht/di)
2E, we get ⌊s/2⌋ complex-valued matrices (for s odd, we222

get an extra real-valued one), hence using one AMG V-cycle would require separate223

set-up of AMG in complex-valued arithmetic (see [27]), a non-trivial time investment.224

We instead replace the complex eigenvalues d1, . . . , d⌊s/2⌋ with a single scalar d and225

take d = davg := (d1 + . . . + ds)/s, replacing M + (ht/di)
2E with M + (ht/davg)

2E.226

This way we deal with the same matrix solve for all ⌈s/2⌉ forward substitutions227

(when applying the preconditioner for (3.4)). Moreover, since the eigenvalues appear228

in complex conjugate pairs, davg is always real and hence the same is true for M +229

(ht/davg)
2E. Apart from being always real, davg is also the minimizer of ∥D − dI∥F230

over all d, i.e., the best scalar approximation of D. We also did extensive numerical231

testing, trying to optimize for the choice of d ∈ R to improve the quality of the232

preconditioner and observed that the choice d = davg leads to (close to) the best233

performing one‡, regardless of s and N . Altogether, we now call the preconditioner234

setup phase (for AMG or even SuperLU) only once the matrix M + (ht/davg)
2E –235

instead of ⌈s/2⌉ times, reducing the preconditioner setup time.236

The PII
Syl approach. Alternatively to solving the systems in (3.4) independently,237

we can stack the systems in (3.4) into a single larger block diagonal system238

(3.7)


M̄ − ht

d1
B

. . .

M̄ − ht
d⌈s/2⌉

B


 (K̄)1

...
(K̄)⌈s/2⌉

 =


1

d1
(FW )1

...
1

d⌈s/2⌉
(FW )⌈s/2⌉

 ,239

and solve (3.7) with preconditioned GMRES, where the preconditioner corresponds240

to stacking the preconditioners for the PI
Syl approach. Naturally, neither of these241

large matrices should be assembled and instead we formulate all their applications in242

terms of the matrix-vector products/solves, analogously to (2.7). The main benefit243

of solving (3.7) over using ⌈s/2⌉ separate GMRES instances for (3.4) is that now the244

matrix-vector products with the ⌈s/2⌉ diagonal blocks can be batched together, in the245

sense of (2.7) – for both the system matrix as well as the preconditioner application.246

For instance, for the matrix-vector multiplication with the system matrix in (3.7)247

†We note that mass lumping can also be a useful approach, particularly in the context of higher-
order FEM discretizations, see, e.g., [44] and the references therein.

‡We aimed to minimize the number of GMRES iterations for the slowest of the systems (3.3) using
the preconditioner (3.6) with di replaced with some d ∈ R. Convergence of some of the systems can
be further accelerated by a different choice of d ̸= davg but not the slowest, numerically confirming
d = davg as a sensible choice.
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8 A. RANI, P. GHYSELS, V. HOWLE, K. LONG AND M. OUTRATA

with a vector u of size 2N ⌈s/2⌉, we only need to apply the matrices M and E once248

to 2 ⌈s/2⌉ vectors and then consider appropriate linear combinations (including the249

complex shifts corresponding to di). This is done by reshaping the vector u into a250

matrix U ∈ RN×2⌈s/2⌉ such that vec(U) = u, and only then applying either M or E.251

For sparse matrices, product with dense matrices has a much higher arithmetic252

intensity than a sequence of products with vectors and thus runs more efficiently [45].253

The same is true when solving linear systems with sparse matrices and single/multiple254

dense right-hand sides. This clearly presents the upside of the PII
Syl approach.255

However, there are also drawbacks. The PII
Syl approach introduces a synchro-256

nization point in the solution process of (3.4), which limits the parallelization of the257

solution process. To asses whether it is more efficient to prioritize the arithmetic258

density or the completely parallel set-up is highly machine-dependent and we don’t259

comment on this any further.260

Another drawback of the PII
Syl approach is that the number of preconditioned261

GMRES iterations for (3.7) is usually somewhat higher than the average number of262

preconditioned GMRES iterations for the independent shifted systems in (3.4). Notice263

that this is not easily explainable by the standard GMRES bounding techniques using264

the so-called ideal GMRES bound (see [24, Sec. 5.7.3, (5.7.13)]), which focuses on265

the matrix polynomial norm estimation, see [12, 16, 24]. Indeed, the eigenpairs of266

the preconditioned system for the PII
Syl approach are easily calculated based on those267

of the preconditioned systems PI
Syl approach, e.g., eigenvalues in PII

Syl correspond to268

the union of the eigenvalues for PI
Syl. Similarly, FoV PII

Syl is the convex hull of the269

FoVs for PI
Syl (see [20, Property 1.2.10, p.12]) and similar calculation also holds for the270

pseudospectra (see [40, Theorem 2.4]). In fact, the difference in the number of GMRES271

iterations is due to the interaction of the right-hand sides with the preconditioned272

system matrices. Although this interaction can be crucial for GMRES behavior,273

see [24, Sec. 5.7.5], in our case the right-hand side vectors are coming from (2.5) and274

as such we expect these to vary smoothly across the Runge–Kutta stages. In other275

words, we do not expect large changes between the average number of preconditioned276

GMRES iterations for (3.4) and the number of preconditioned GMRES iterations277

for (3.7).278

Since the systems in (3.6) and (3.7) are complex, we use a complex GMRES solver.279

The block triangular solves in (3.6) are also performed in complex arithmetic. Only280

the calls to the AMG or SuperLU solvers are done in real arithmetic, which is possible281

because davg is real. Solving a linear system with a real matrix but complex right-hand282

side can be done with two real-valued solves, one for the real and one for the imaginary283

part. We could also use a real-valued GMRES by explicitly solving for the real and284

complex parts of K̄. A complex system Ax = b or (ℜ(A) + iℑ(A))(ℜ(x) + iℑ(x)) =285

ℜ(b) + iℑ(b) can be solved using real arithmetic by solving the system286

(3.8)

[
ℜ(A) −ℑ(A)
ℑ(A) ℜ(A)

] [
ℜ(x)
ℑ(x)

]
=

[
ℜ(b)
ℑ(b)

]
.287

However, since the system is now twice as large, we expected this system to have288

slower solution process (in terms of the overall runtime) and haven’t investigated this289

direction any further.290

4. Numerical Results. In our experiments, we use first-order Lagrange basis291

functions (p = 1) on a 2D triangular mesh for Ω = [0, 1]2 with the standard Galerkin fi-292

nite elements spatial discretization and the initial condition f(x) = cos(πx1) cos(πx2).293
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The temporal step size ht was chosen to balance spatial and temporal errors, depend-294

ing on the spatial step size h. Specifically, for an s-stage IRK method of order q,295

we set ht = h
p+1
q , where p is the degree of the basis polynomials. For example, for296

the wave equation with s-stage Gauss–Legendre methods of order q = 2s, we chose297

ht = h
1
s .298

We use the method of manufactured solutions to facilitate the calculation of299

relative errors. The Sundance package [26] from the Trilinos project [41] is used to300

generate the mass and stiffness matrices required for our simulations. Our code is301

implemented in python, leveraging open-source packages such as NumPy [43], SciPy302

[43], and PyAMG [4]. Specifically, we use the Ruge-Stüben algebraic multigrid solver303

from the PyAMG library to perform our experiments efficiently. Additionally, we304

used MATLAB for creating a few of the plots.305

We compare our method with some of the existing methods [8, 9, 28, 33, 39], where306

the original system (2.6) is preconditioned with a block preconditioner P having the307

general form308

(4.1) P = Is ⊗ M̄ − htÃ⊗B,309

where Ã forms a good preconditioner of the Butcher coefficient matrix A – we consider310

three specific choices:311

• LD preconditioner (PLD) [33]: Ã = LD, where A = LDU with L unit312

lower triangular, D diagonal and U unit upper triangular matrices.313

• κ-optimal preconditioner (Pκ) [39]: Ã = L, with L chosen to minimize314

κ(L−1A) over the space of lower triangular matrices. We carry out the opti-315

mization using the Nelder-Mead optimization algorithm [31].316

• Triangular approximate inverse preconditioner (PTAI): Ã = L, with317

L chosen to minimize
∥∥L−1A− I

∥∥
2
over the space of lower triangular matri-318

ces.319

The κ-optimal and LD preconditioners were initially studied in the context of para-320

bolic equations [28, 39, 33], but have also been shown to be effective when applied to321

the wave equation with Runge–Kutta–Nystrom timestepping [9, 8].322

We propose the PTAI preconditioner as a new alternative to Pκ with a similar323

idea but a simpler implementation – minimization of
∥∥L−1A− I

∥∥
2
amounts to solving324

s small least-squares problems as opposed to the minimization of κ(L−1A), which325

requires an optimization algorithm such as Nelder-Mead.326

4.1. Preconditioner Application. Since the preconditioners PLD,Pκ and327

PTAI take Ã as a lower triangular matrix, we put Ã = [lij ], with lij = 0 for i < j.328

The application of these preconditioners amounts to solving the system329 
M̄ − htl11B
−htl21B M̄ − htl22B

...
. . .

−htls1B . . . M̄ − htlssB




v1

v2

...
vs

 =


b1
b2
...
bs

 ,(4.2)330

which we do with a single block forward substitution, requiring s subsolves, namely331

(M̄ − htliiB)vi = bi +

i−1∑
j=1

htlijBvj .(4.3)332
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We again take advantage of the 2× 2 block structure of M̄ − htliiB, i.e., having the333

block LU factorization334

M̄ − htliiB =

[
M 0

htliiE M + h2t l
2
iiE

] [
I −htliiI
0 I

]
.335

We solve336 [
M 0

htliiE M + h2t l
2
iiE

] [
I −htliiI
0 I

]
vi = bi337

using block forward and backward substitution. This way, each solve requires one338

solve with M and one solve with M + h2t l
2
iiE and analogously to the approaches339

PI
Syl,PII

Syl we replace the solves with M with two iterations of Gauss-Seidel and the340

solves with M + h2t l
2
iiE with a single V-cycle of AMG.341

Altogether, the preconditioners PLD,Pκ, and PTAI require s AMG setups initially342

and then s V-cycles and 2s Gauss-Seidel iterations per application (we assume that343

the Gauss-Seidel set-up time is negligible compared to that of the AMG). For both344

PI
Syl,PII

Syl, we can do with only 1 AMG setup and then ⌈s/2⌉ V-cycles and 2s Gauss-345

Seidel iterations per application. This comparison invites the idea of replacing the346

AMG V-cycles for the s different matricesM+h2t l
2
iiE with an averaged AMG V-cycle347

for M +h2t l
2
avgE to obtain both, the speed-up in the set-up phase as well as improved348

arithmetic density, analogously to PI,II
Syl . Since we consider the above preconditioners349

mainly for the sake of comparison, we do not explore this direction any further here350

but this seems to us as an interesting option for improving the efficiency of these351

preconditioners.352

4.2. Analysis of the preconditioners. To predict a GMRES preconditioner353

quality we commonly try to calculate or bound some key properties of the precondi-354

tioned system, e.g., its spectrum (and its clustering) and conditioning of its eigenbasis,355

its field of values (FoV) or its pseudospectrum. A favorable results, such as these being356

well-separated from the origin and/or tightly clustered can provide valuable insights357

into the convergence behavior of GMRES, see [24, Section 5.7]. Here we illustrate358

some of these properties for the preconditioned system with all of the considered359

preconditioners, with the mesh size§ h = 2−3.360

First, in Figure 4.1, we show the “benchmark” eigenvalue and FoV plots for both361

the unpreconditioned and the left preconditioned systems using PLD,Pκ, and PTAI362

and constructing the preconditioners exactly. Notably, the eigenvalues of each of363

the preconditioned systems are much better separated from the origin comapred to364

the unpreconditioned case, with PTAI achieving the most favorable properties of the365

ones plotted. However, increasing the number of stages results in the a shift of the366

eigenvalues closer to the origin and fast expansion of FoV.367

Next, we examine the analogous quantities also for PI
Syl and PII

Syl. As in sec-368

tion 3.1, we only consider the systems associated with the eigenvalues di of A
−T with369

non-negative imaginary part, see (3.4).370

As for the preconditioners, we recall the block LU factorization of ASyl[ii] in (3.4)371

and replace di with davg in the diagonal blocks of the block lower triangular factor.372

§Note that later we show performance results for h = 2−9. Both computation and visualization
of spectra and FoV is demanding for fine mesh size (and larger s). The effect of the mesh scaling
has been considered in [15, 11] for parabolic problems and can be addressed in similarly also here.
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Fig. 4.1: Eigenvalue and FoV plots of the left-preconditioned 2D wave problem with
h = 2−3 using the Gauss–Legendre IRK method for s = 3 (a) and s = 5 (b), precondi-
tioned with Pκ,PLD and PTAI . The spectrum of the unpreconditioned systems in red
are shown together with the spectrum of the preconditioned systems as a reference.
Preconditioners are constructed exactly. We note that the FoV for the preconditioned
systems for s = 5 all contain the rectangle (−2, 4)× (−3i, 3i) and as such are not vis-
ible in the plot.

Multiplying back, the exact preconditioner for the i-th system becomes373 
M −ht

di
M

ht
di
E h2t

(
d2i − d2avg
d2i d

2
avg

)
E +M

 , for i = 1, . . . ,
⌈s
2

⌉
.(4.4)374

In Figure 4.2 we show the spectra and FoV with the preconditioners constructed375

exactly (i.e., corresponding to (4.4)) and in Figure 4.3 we consider the “realistic”376

preconditioners, where the block-solves are replaced with two Gauss-Seidel iterations377

or one AMG V-cycle, see section 3.1.378

In both cases, the eigenvalues of the preconditioned systems P−1
SylASyl[ii] are379

well separated away from zero for i = 1, . . . , ⌈s/2⌉. While the plots in Figures 4.2380

and 4.3 resemble each other closely, differences can be observed, e.g., by comparing381

the subplots for s = 2 and s = 4. We also see that the FoV plots tell a similar382

story with respect to increasing s – larger s results in larger FoVs that are, moreover,383

closer to the origin and thereby worsening the classical GMRES bound based on FoVs.384

Nonetheless, we see a quantitative improvement in the FoV compared to the other385

preconditioners.386

Finally, we present the condition numbers of the eigenbasis of the preconditioned387

systems in Table 4.1. First, we see that for both PI
Syl and PII

Syl we obtain truly388

well-conditioned eigenbasis, suggesting that the eigenvalues indeed govern the GM-389

RES convergence, i.e., the study and understanding of Figure 4.2 becomes decisive.390

Seemingly, the same cannot be said for PLD,Pκ and PTAI , looking at the numbers391

before parenthesis in Table 4.1. However, this can be ascribed to large extend to392

the singularity of E (due to the Neumann BC in (2.2)). As this results in only one393
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s PLD Pκ PTAI PI
Syl PII

Syl

2 7.7e+7 (1.4e+2) 5.8e+7 (1.1e+2) 7.2e+7 (1.3e+2) [3.6] 3.6
3 8.2e+7 (2.1e+2) 8.1e+7 (2.1e+2) 6.5e+7 (1.7e+2) [3.6, 3.9] 3.9
4 7.9e+7 (2.4e+2) 1.2e+8 (3.8e+2) 8.0e+7 (2.4e+2) [3.6, 3.7] 3.7
5 1.0e+8 (3.6e+2) 1.4e+8 (4.7e+2) 1.6e+8 (5.4e+2) [3.6, 3.6, 3.5] 3.6

Table 4.1: We show the condition numbers of the eigenbasis of the preconditioned
systems (for the exact preconditioners) for different s with the mesh size h = 2−3.
For PLD,Pκ and PTAI we observed that the singularity of E is the main culprit and we
also show (in parantheses) the conditioning when this is artificially removed. For PI

Syl

we present the conditioning of the eigenbasis for each of the ⌈s/2⌉ systems. We want
to emphasize that to obtain these results accurately, requires a careful reformulation
of the calculation, refer to the text for more details.

eigenvector that corresponds to the zero eigenvalue, we can look on the conditioning394

of the eigenbasis without this mode (corresponding to a constant function) and we see395

a significant improvement (shown in the parentheses in Table 4.1). Let us note that396

the results in Table 4.1 are not identical to numbers we obtain when we compute the397

condition numbers of the eigenbasis naively, using routines solve(), eig(), cond()398

from the library numpy.linalg (or their other equivalents) – quite on the contrary.399

Due to the high density of the eigenvalues shown in Figures 4.1–4.3, the standard400

approach is susceptible to numerical instabilities and gives (sometimes hugely) inac-401

curate results. However, these issues can be addressed by a direct reformulation to402

obtain correct values.¶403

4.3. Performance Comparison: Wave Equation. In this section, we com-404

pare the performance of the different preconditioning methodologies analyzed in the405

previous section. Our comparison focuses on AMG setup time, total GMRES solve406

time, GMRES iteration counts. We also verify the code and its calculations using the407

method of manufactured solutions, see [35] and the references therein.408

Number of solver calls: For PI
Syl, we require one real AMG set-up (as discussed409

in Section 3.1) and each preconditioner application requires two V-cycles (since the410

right-hand side is complex-valued we compute separately the real and the imaginary411

parts) and two iterations of Gauss-Seidel (replacing the solve withM with two Gauss-412

Seidel iterations). Denoting the number of GMRES iteration for each of the ⌈s/2⌉413

systems by itr1, . . . , itr⌈s/2⌉, the total number of AMG V-cycles and Gauss-Seidel414

calls becomes415

# AMG V-cycles :

⌈s/2⌉∑
j=1

2× itrj , # Gauss-Seidel iterations :

⌈s/2⌉∑
j=1

2× itrj .416

¶These statements are not obvious but can be derived using the framework in [15] and will be
explained and proved in detail in the upcoming manuscript focusing on the spectral analysis of these
preconditioners. However we feel that these should be mentioned here to show the full picture of the
preconditioned systems for GMRES, and eigenvalues alone cannot do that.

In [11] and [15], the authors propose new techniques for spectral analysis of similar systems arising
from parabolic PDEs – these can be also adapted to the hyperbolic case as well as extended for the
FoVs and pseudospectral GMRES bounds. This is already a work in progress and will be treated
separately in our upcoming paper, together with theoretical justification of the above observations.
Next, we discuss the resulting GMRES performance.
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Fig. 4.2: Eigenvalue and FoV plots of ASyl[ii] and (PI
Syl)

−1ASyl[ii] of a 2D wave

equation with h = 2−3 using Gauss–Legendre for s = 2 to s = 5. Preconditioners are
constructed exactly.

For the preconditioners PLD, Pκ, and PTAI , we require s real AMG set-ups (as417

discussed in Section 3.1) and each preconditioner application requires s AMG V-418

cycles and 2s Gauss-Seidel iterations. Denoting the number of GMRES iterations by419

itrLD, itrκ and itrTAI , the total number of AMG V-cycles and Gauss-Seidel iterations420

for each of these preconditioners becomes421

# AMG V-cycles : s× itrLD,κ,TAI , # Gauss-Seidel iterations : 2s× itrLD,κ,TAI .422

Figure 4.4b compares the total number of AMG V-cycles required by various423

preconditioners for the mesh size h = 2−9. For s ≥ 4, PI
Syl requires fewer V-cycles424

compared to the other preconditioners.425

Runtime: In order to compare the runtime of the preconditioners, we clock the426

set-up times and the times until GMRES converges to the relative residual smaller427

than 1e − 8‖ with randomized right-hand side vectors (of appropriate sizes) for the428

‖As we focus here on comparing the preconditioners, we set identical GMRES tolerance for all
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Fig. 4.3: Eigenvalue and FoV plots of ASyl[ii] and (PI
Syl)

−1ASyl[ii] of a 2D wave

equation with h = 2−3 using Gauss–Legendre for s = 2 to s = 5. The preconditioners
use instead of exact solves 2 iterations of Gauss-Seidel and 1 AMG V-cycle.

preconditioned systems P−1
LDA, P−1

κ A,P−1
TAIA and for the approach PI

Syl (adding429

together all of the ⌈s/2⌉ system timings).430

In Figure 4.4a, we compare both the solve time (cross pattern) and AMG setup431

time (solid color) for different preconditioners for various number of stages for the432

mesh size h = 2−9 (finest considered). We begin to notice differences in performance433

for s = 3, while for s = 5 PI
Syl showcases a significant advantage, being twice as fast434

as the next best method, PTAI .435

In Figure 4.5, we again present both the solve time (cross pattern) and AMG436

setup time (solid color) for different preconditioners, now with fixed number of stages437

(s = 5) and for refining mesh. The PI
Syl approach consistently outperforms the other438

preconditioners throughout the refinement process, again requiring only half of the439

total runtime of the next best method, PTAI .440

mesh sizes but note that in practice we usually aim for balancing the GMRES tolerance against the
(expected) discretization error, similarly to balancing the temporal and spatial discretization errors.

This manuscript is for review purposes only.



EFFICIENT SOLUTION OF FULLY IRK METHODS FOR LINEAR WAVE EQUATION 15

2 3 4 5

stages

0

2

4

6

8

10

12

14

16

ti
m

e
(s

)

P  AMG setup

P  solve

P
LD

 AMG setup

P
LD

 solve

P
TAI

 AMG setup

P
TAI

 solve

P
Syl
I  AMG setup

P
Syl
I  solve

(a) runtime

2 3 4 5

stages

0

20

40

60

80

100

120

140

160

180

#
 o

f 
A

M
G

 V
-c

y
c
le

s

P

P
LD

P
TAI

P
Syl

I

(b) number of AMG V-cycles

Fig. 4.4: Comparison of the Sylvester formulation PI
Syl (separate ⌈s/2⌉ GMRES sys-

tems) with other preconditioners for h = 2−9, corresponding to one preconditioned
GMRES call (or to the sum of the ⌈s/2⌉ calls for PI

Syl), including the set-up time.

P  AMG setup

P  solve

P
LD

 solve

P
LD

 AMG setup

P
TAI

 AMG setup

P
TAI

 solve

P
Syl
I  AMG setup

P
Syl
I  solve

(a)

P

P
LD

P
TAI

P
Syl

I

(b)

Fig. 4.5: Runtime comparisons (including the set-up time) in linear (a) and logarith-
mic (right) scale of the Sylvester formulation PI

Syl (separate ⌈s/2⌉ GMRES systems)
with other preconditioners as mesh refines for s = 5. The timings correspond to one
preconditioned GMRES call (or to the sum of the ⌈s/2⌉ calls for PI

Syl).

The superior performance of PI
Syl can be attributed to its efficient handling of the441

Sylvester reformulation, which reduces the number of AMG V-cycles needed for each442

subsolve. This efficiency becomes more pronounced as the stage number increases443

and the mesh is refined, highlighting the robustness and scalability of PI
Syl. On the444

other hand, preconditioners such as PLD and Pκ require additional AMG V-cycles445

and hence more time, especially for finer meshes and/or larger s. Comprehensive446

tabulated data, including solve time, AMG setup time, and iteration count, can be447

found in [34].448

Scalability: In Figure 4.6, we present the scalability of PI
Syl with respect to449
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(a) (b)

Fig. 4.6: Linear scaling of the solution time of PI
Syl with respect to N (the number of

mesh points) and s is shown in (a) and (b) respectively. In (b), to see the linear scaling
in s, we divide the runtime by s, and compare with PTAI . The timings correspond to
one preconditioned GMRES call (or to the sum of the ⌈s/2⌉ calls for PI

Syl) without
the AMG set-up time.

N (the number of mesh points, N = 2(1 + h−1
x )2) and s (the number of stages)450

corresponding to one preconditioned GMRES call (or to the sum of the ⌈s/2, ⌉ calls451

for PI
Syl). Figure 4.6a demonstrates the linear scalability of PI

Syl in terms of N ,452

indicating that Sylvester preconditioning achieves optimal scaling with mesh size,453

exhibiting a runtime of O(N).454

Our method is highly scalable, showing a time complexity of O(sN) compared to455

O(s2N) for other preconditioners, as illustrated in Figure 4.6b. To demonstrate this,456

we consider the time per stage and compare it with PTAI , shown in green, which has457

a time complexity of O(s2N). We expect the PI
Syl plots (in orange in Figure 4.6b)458

corresponding to different times per stage to overlap, which is consistent with our459

observations. In contrast, the PTAI plots exhibit vertical shifts as the stage number460

increases, confirming the expected O(s2N) complexity.461

However, it is worth noting that due to the transformation with W , our method462

technically remains O(s2N). Despite this, the transformation step is highly efficient463

and does not dominate the overall timing, ensuring that PI
Syl remains an optimal and464

scalable preconditioning strategy.465

PII
Syl approach: So far, we have discussed the performance of PI

Syl and compared466

it with other preconditioners Pκ, PLD and PTAI . Next we will discuss the performance467

of PII
Syl approach, based on construction of a diagonal block matrix, referred to as468

ASyl[ii], see (3.4). This allows us to batch linear systems solves withM−(ht/davg)
2E469

during the preconditioner application into a single solve applied to ⌈s/2, ⌉ right-hand470

sides as well as also harvest the gains of lower set-up times of PI
Syl.471

Figure 4.7 shows the runtime performance of PII
Syl compared with other precon-472

ditioners (PLD, Pκ, and PTAI) using two different solvers for the problems with the473

system matrices M − (ht/davg)
2E and M −h2t l2iiE – one AMG V-cycle in Figure 4.7a474

or the SuperLU in Figure 4.7b. As above, the cross pattern represents the solve time,475

while the solid color indicates the AMG/SuperLU setup time.476
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Fig. 4.7: Runtime of the Sylvester formulation PII
Syl (GMRES applied to (3.7)) using

(a) AMG (without multiple right-hand side application) and (b) SuperLU (with mul-
tiple right-hand side application), with other preconditioners with h = 2−9 for one
preconditioned GMRES call.

The reason for comparing these two solvers is the following: while generally slower477

for large systems and more expensive in set-up time SuperLU allows for multiple right-478

hand side whereas the PyAMG implementation of AMG V-cycle does not (using a479

different AMG implementation that does allow for multiple right-hand sides, e.g., the480

hypre package, is part of the ongoing work). Hence, the possible gains from batching481

the solves together can be inferred by comparing these two.482

In Figure 4.7a, we see that PII
Syl performs well compared to the other precondi-483

tioners when using AMG for the subsolve, for s ≥ 4. In Figure 4.7b, PII
Syl consistently484

outperforms the other preconditioners in terms of runtime when using SuperLU for485

the subsolve.486

Although the ability to combine operations efficiently is theoretically crucial for487

maintaining scalability and reducing computational overhead, and particularly so in488

large-scale simulations, we have seen only modest gains in the runtime improvement489

of PII
Syl compared to the other preconditioners when comparing SuperLU and the490

AMG. Naturally, the set-up time improvement is decisive but that is to be expected,491

especially for larger systems, such as those for s = 4, 5. That being said, we believe492

that further investigation and code improvement in the direction of the PII
Syl approach493

could and will lead to meaningful improvements. Especially as we continue to refine494

our preconditioning strategies, integrating more advanced and apt software solutions495

will be essential for achieving optimal performance.496

GMRES iterations: Figure 4.8 compares the iteration counts of PLD, Pκ,497

PTAI , PI
Syl, and PII

Syl. We see that the total number of iterations for PII
Syl is lower498

than the sum of the number of iterations for PI
Syl for all i = 1, . . . , s. Admittedly,499

this is not a fair comparison, since each iteration for PII
Syl is more expensive than500

those for PI
Syl

∗∗. Nonetheless, Figure 4.8 highlights our experience, where only one501

∗∗In fact, even the GMRES iterations for the different systems with PI
Syl can have different costs

– if s is odd, then one of the systems will be real. This highlights that the timings might give a
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(or for each of the ⌈s/2⌉ calls for PI
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Fig. 4.9: Mesh dependence of the relative errors for the generalized wave equation
with the parameters choice [ϵ1, ϵ2, ϵ3] = [0.75, 0, 0] (a) and the parameters choice
[ϵ1, ϵ2, ϵ3] = [0.75, 0.75, 0.375] (b). The errors are O

(
h2x
)
at all stages; recall that the

timestep ht was chosen so that hp+1
x = h2st accuracy, so we are obtaining the expected

convergence rate in both space and time with no order reduction.

of the PI
Syl systems required comparable number of GMRES iterations to the other502

considered preconditioners while the rest of the systems converged in significantly503

fewer iterations.504

Computation verification: To verify the computed solutions and the code,505

we look at the discrete L2 norm of the relative errors in space along the entire time-506

stepping process and we considered the largest one, i.e., we focused on the discrete L∞
507

norm in time of the discrete L2 norms in space. The GMRES solve(s) were run at each508

timestep until the relative residual decreased below 1e − 8. The (relative) L2 norm509

better idea of the efficiency than the iteration counts in our set-up.
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of the sptaial errors are generally of similar magnitude and we have not observed any510

order reduction in these as the timestepping progressed. As the wave equation in the511

simple form plausibly doesn’t pose enough of a challenge, we carried out the same ex-512

periments also for the generalized wave equation problem described in Section 4.4 and513

we show the results in Figure 4.9a (for the parameters choice [ϵ1, ϵ2, ϵ3] = [0.75, 0, 0])514

and Figure 4.9b (for the parameters choice [ϵ1, ϵ2, ϵ3] = [0.75, 0.75, 0.375]). Same as515

for the simple wave equation, we have not observed any order reduction.516

In conclusion, while PI
Syl already demonstrates excellent performance, there is517

potential for improving the performance of PII
Syl with AMG if we adopt software that518

supports combined operations. This adaptation would, based on our experience, lead519

to meaningful runtime reductions, see [25].520

4.4. Performance Comparison: Generalized settings. We consider a gen-521

eralized version of (2.2), namely522

(4.5)

utt = ∇ · (κ(x)∇u)− β(x)u+ b(x, t), in Ω× (0, T ],

n̂ · ∇u = 0, on ∂Ω,

u(x, 0) = ψ(x) in Ω,

ut(x, 0) = 0 in Ω,

523

with the particular choices524

κ(x) = 1 + ϵ1 cos

(√
2x1 +

x2√
3

)
, β(x) = ϵ2 + ϵ3 sin

(
x1√
6
−

√
5x2

)
,

ψ(x) = cos(x1) cos(2x2),

525

where x = [x1, x2]
T ∈ Ω = [0, π]2 and the coefficients are constrained as |ϵ1| < 1,526

|ϵ2| ≥ 0, |ϵ3| ≤ |ϵ2| so that both κ(x) and β(x) are positive functions. We again use527

the method of manufactured solutions and take b(x, t) so that the function u(x, t) :=528

ψ(x) cos(t) satisfies the equation (4.5). The transformation and weak formulation529

carry through analogously to Section 2, arriving at the same problem (2.6), only now530

the stiffness matrix entries are given as531

Eij =

∫
Ω

κ∇ϕi · ∇ϕj + βϕiϕjdx,532

instead of (2.4).533

In our experience, the results for this problem generally follow the key features534

pointed out in the previous section. We consider two particular setting:535

The space-variable wave equation We take [ϵ1, ϵ2, ϵ3] = [0.75, 0, 0] so that536

β(x) ≡ 0. We show the runtimes and AMG V-cycles count in Figure 4.10 and their537

scaling in Figures 4.11 and 4.12.538

The Klein-Gordon equation We take [ϵ1, ϵ2, ϵ3] = [0.75, 0.75, 0.375]. We show539

the runtimes in Figure 4.13 and their scaling in Figures 4.14 and 4.15.540

5. Conclusion. We have presented a reformulation of the large, structured541

linear system from the IRK time integration of hyperbolic PDEs as an equivalent542

Sylvester matrix equation. We then reduced the problem to a series of s separate543

smaller linear systems, which we can solve efficiently with preconditioned GMRES.544

The resulting, new method stands proves to be twice as fast as other existing ap-545

proaches when increasing the number of Runge–Kutta stages and refining the mesh,546
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Fig. 4.10: Comparison of the Sylvester formulation PI
Syl (separate ⌈s/2⌉ GMRES

systems) with other preconditioners for h = 2−9, corresponding to one preconditioned
GMRES call (or to the sum of the ⌈s/2⌉ calls for PI

Syl), including the set-up time.
The parameters are taken as [ϵ1, ϵ2, ϵ3] = [0.75, 0, 0].
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Fig. 4.11: Runtime comparisons (including the set-up time) in linear (a) and logarith-
mic (right) scale of the Sylvester formulation PI

Syl (separate ⌈s/2⌉ GMRES systems)
with other preconditioners as mesh refines for s = 5. The timings correspond to one
preconditioned GMRES call (or to the sum of the ⌈s/2⌉ calls for PI

Syl). The param-
eters are taken as [ϵ1, ϵ2, ϵ3] = [0.75, 0, 0].

while requiring fewer AMG V-cycles. Our experiments show that our method outper-547

forms other commonly used preconditioners, with the improvement becoming more548

pronounced as s is increased and persistently doing better, twice as fast with refined549

spatial discretization.550

The preconditioner PI
Syl reduces both the solve time but also the AMG setup551

time, compared to the other preconditioenrs. Notably, PI
Syl requires only one AMG552

setup, while the other preconditioners require s set-ups, making also the set-up phase553
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(a) (b)

Fig. 4.12: Linear scaling of the solution time of PI
Syl with respect to N (the number of

mesh points) and s is shown in (a) and (b) respectively. In (b), to see the linear scaling
in s, we divide the runtime by s, and compare with PTAI . The timings correspond to
one preconditioned GMRES call (or to the sum of the ⌈s/2⌉ calls for PI

Syl) without
the AMG set-up time. The parameters are taken as [ϵ1, ϵ2, ϵ3] = [0.75, 0, 0].
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Fig. 4.13: Comparison of the Sylvester formulation PI
Syl (separate ⌈s/2⌉ GMRES

systems) with other preconditioners for h = 2−9, corresponding to one preconditioned
GMRES call (or to the sum of the ⌈s/2⌉ calls for PI

Syl), including the set-up time.
The parameters are taken as [ϵ1, ϵ2, ϵ3] = [0.75, 0.75, 0.375] .

notably more efficient. Although PII
Syl did not perform to its full potential in its554

current implementation, we explained its potential based on improved efficiency of555

combined matrix-vector multiplication operations.556

We are considering integrating our proposed method in MFEM (Modular Finite557

Element Method) [2, 29] and/or SUNDIALS [19], and we plan to extend the framework558

to other preconditioners and other time-dependent PDEs. In order to take full advan-559

tage of the new formulation, we intend to use the hypre algebraic multigrid solver [21]560
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Fig. 4.14: Runtime comparisons (including the set-up time) in linear (a) and logarith-
mic (right) scale of the Sylvester formulation PI

Syl (separate ⌈s/2⌉ GMRES systems)
with other preconditioners as mesh refines for s = 5. The timings correspond to one
preconditioned GMRES call (or to the sum of the ⌈s/2⌉ calls for PI

Syl). The param-
eters are taken as [ϵ1, ϵ2, ϵ3] = [0.75, 0.75, 0.375] .
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Fig. 4.15: Linear scaling of the solution time of PI
Syl with respect to N (the number of

mesh points) and s is shown in (a) and (b) respectively. In (b), to see the linear scaling
in s, we divide the runtime by s, and compare with PTAI . The timings correspond to
one preconditioned GMRES call (or to the sum of the ⌈s/2⌉ calls for PI

Syl) without
the set-up time. The parameters are taken as [ϵ1, ϵ2, ϵ3] = [0.75, 0.75, 0.375] .

instead of pyAMG as it supports multiple right-hand side vectors. Alternatively, we561

will look at using the STRUMPACK [7] sparse solver and preconditioning library.562

The STRUMPACK preconditioners are based on sparse LU factorization with rank-563

structured compression and can achieve near-linear complexity for a range of PDE564

problems, and support multiple right-hand sides. The STRUMPACK preconditioner565

accuracy can be tuned with the low-rank compression tolerance, offering a trade-off566

between compression tolerance (and thus set-up costs) and the approximation accu-567
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racy (presumably leading to a better preconditioner and fewer GMRES iterations).568

Having many time steps further emphasizes the importance of this trade-off. We also569

plan to study extensions to the non-linear case. We also continue investigating the570

field of values and spectral analysis as part of our ongoing research project.571

To conclude, PI
Syl has clearly outperformed the other considered preconditioners572

for the considered problems, especially at higher stages and with finer mesh sizes. The573

results indicate that continuing to develop and integrate advanced preconditioning574

techniques can make these methods even more efficient and scalable for large-scale575

computational problems.576
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