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Abstract

We explore and analyze the use of multiprecision arithmetic for several classes of Schwarz
methods and preconditioners, where the approximate solution of the local problems is performed
at a lower precision, i.e., with fewer digits of accuracy than in the underlying (double precision)
computation. Conditions for the appropriate round-off criteria for the lower precision are pre-
sented. It is found experimentally that for the model problems about 5 digits of accuracy are
sufficient to achieve the theoretical restrictions, and thus, single precision suffices for the local
solves. Several numerical experiments illustrate the obtained results.

1 Introduction

We consider the solution of systems of linear algebraic equations of the form

Au = f , A ∈ RN×N , f ∈ RN . (1)

In particular, we analyze the use of multiprecision arithmetic for three types of Schwarz methods
(see [21]): (i) the (damped) additive Schwarz method ((d)AS, see [35, 50]), (ii) the restricted additive
Schwarz method (RAS, see [7]), and (iii) the multiplicative Schwarz method (MS, see [35]); see [30]
for an overview of multiprecision/mixed-precision algorithms. Specifically, we study the solution of
the local problems (see precise definitions below) using lower precision. To the best of our knowledge,
this is the first time this approach is analyzed for Schwarz methods.

The underlying idea of Schwarz methods, as a part of the wider family of domain decomposition
methods, can be summarized as “divide and conquer”, where the solution of a large problem is
approximated by sub-dividing it into many smaller ones that are computationally less demanding
than (1); these are called the local problems (or subproblems or subdomain problems); see Section 2
for a detailed discussion. For matrices obtained by the discretization of a partial differential equa-
tion (PDE), the convergence analysis usually focuses on studying the spectral information of the
iteration operator. When the method is used as a preconditioner, the convergence analysis usually
uses the continuous PDE and its discretization, showing a convergence bound independent of the
discretization parameter; see, e.g., [14, 46, 48]. For the algebraic error analysis of the broader class
of stationary iterative methods, we refer the reader to [29, Chapter 17] and the references therein.

For algebraic Schwarz methods, where analysis does not take advantage of the provenance of the
system matrix, we are usually satisfied with information about the asymptotic convergence factor
of the method (see, e.g., [3, 17, 18]), whereas more complete spectral information is often available
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once we couple the system matrix with further information about its origin, leading to a more
complete understanding of the method behavior; see, e.g., [11, 12, 13, 20, 24, 25]. Importantly,
these methods are usually used as preconditioners, i.e., their convergence is further accelerated
using Krylov subspace methods. But in our experience, in order to obtain more insight it is very
often very useful to first study the Schwarz methods (or other domain decomposition methods) as
stand-alone solvers. Then, based on their analysis, we can obtain an insight into or estimate of
the type of performance we can expect when we accelerate these methods with a Krylov subspace
method. Moreover, in this way we often get additional insights into the weak points of the method,
which can be then used to propose an improvement such as a coarse space, see, e.g., [11, 22] and
also [43]. Schwarz methods as solvers are also fundamental for Schwarz asynchronous iterations;
see, e.g., [28, 36].

The goal of multiprecision algorithms is, in general, to reduce the computation, communication
and memory costs by working with some portion of the problem/algorithm in lower precision,
e.g., replacing standard double-precision data representation with a single-precision or even half-
precision in the computationally most challenging part of the algorithm, see, e.g., [30] and the
references therein. Intuitively, working (partially) in a lower precision can introduce new issues, e.g.,
numerical error propagation, and thus introduces a trade-off between computational complexity (by
virtue of lowering the precision) and the level of approximation difficulty (e.g., the floating point
precision used). However, as shown in [10], using multiprecision algorithms, where different parts of
the algorithm are carried out in different precision, it is sometimes possible to get the best of both
worlds. To fix ideas, let us consider having a working precision (say, double precision) and denote
its unit round-off by uw (say, uw ≈ 10−16), see [29, p. 3]. The natural first step is to consider the
multiprecision Schwarz methods where the local problems are solved in a “lower precision”, i.e., in
a precision with a unit round-off uℓ such that uℓ > uw (we shall identify the precision with its unit
round-off, e.g., by “precision uℓ is lower than uw” we mean uℓ > uw). Importantly, working in the
lower precision uℓ limits not only the precision of the computation but also its range, i.e., without
careful scaling small/large numbers that we can represent in uw may underflow/overflow in uℓ, see,
e.g., [32]. We comment on the specifics of multiprecision computations relevant to our interest in
Section 3.

We note that similar settings has been already considered, e.g., in [27], the authors use the
(non-overlapping) AS as a preconditioner for the conjugate gradient method (CG), using single
precision for the preconditioner solve (i.e., running the AS in single precision) and the rest of the
CG algorithm in double precision. In [2], the authors take the (non-overlapping) block-Jacobi as a
preconditioner for CG and based on the 1-norm condition number of each of the diagonal blocks
they calculate their inverses in half, single, or double precision and then apply these using dense
mat-vec products in parallel for each block; similar methodology has been used also in [47] and tested
for practically relevant and challenging 2D and 3D problems. Similarly, in [44], the authors study
(overlapping, with coarse space) AS as the preconditioner and the effect of using different precision
and data formats for the subdomain matrices (fixed vs. floating point precision as well as dense
storage of the inverse vs. storage of the Cholesky factor) on the performance of the preconditioned
CG. Note that the focus in all of these papers is on numerical experiments and observations about
the preconditioned CG, i.e., the interaction of the domain decomposition method and the different
precision choices is present only implicitly. The analysis focuses on the (often questionable, see [34,
Section 5.6, Corollary 5.6.7 and onward]) condition number bound for CG for the preconditioned
system and is not interested in the domain decomposition method of choice as a stand-alone solver.
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In this paper we focus on multiprecision Schwarz methods with a lower precision uℓ for the
local solves, treating both uℓ and the rounding routine as free variables that can and should be
chosen so as to preserve or even improve the convergence of the Schwarz method. To that end we
propose specific rounding routines, derive sufficient conditions for the convergence of the resulting
multiprecision Schwarz methods and numerically demonstrate their effectiveness. Later in the paper,
we also consider the effectiveness of these methods as preconditioners, i.e., with the Krylov subspace
method acceleration.

Thus, our contribution consists of analyzing Schwarz methods where the local problems are
solved with lower precision. Our analysis provides sufficient conditions, and when these conditions
are met, one can calculate the minimum number of digits needed in the approximation to the
solution of the local problem to obtain overall convergence. Our experiments with multiple type
of discretized partial differential equations indicate that our conditions are satisfied with about 5
digits of accuracy. The computations shown illustrate that this is indeed the case.

The rest of the manuscript is organized as follows: Sections 2 and 3 give a brief introduction to
(algebraic) Schwarz methods and to multiprecision computations. Section 4 introduce and analyze
the multiprecision Schwarz methods and demonstrate their performance on several model problems.
Section 5 then explores some additional avenues for analysis of multiprecision Schwarz methods and
we conclude with some remarks in Section 6.

2 Algebraic Schwarz methods

Consider p subspaces W i ⊂ RN , i = 1 . . . p that form a non-overlapping decomposition of RN , i.e.,

RN =

p∑
i=1

W i =

{
w |w =

p∑
i=1

wi for some wi ∈ W i

}
,

and W i ∩ W j = {0} if i ̸= j, and we denote their dimensions by N̄i := dim(W i). If the prob-
lem (1) corresponds to a discretization on some grid on a domain Ω, then W i are often subspaces
corresponding to the unknowns in physical subdomains Ωi ⊂ Ω. We set the restriction operators
R̄i : RN → RN̄i , corresponding to N̄i-by-N zero-one matrices with full row rank N̄i, and obtain
the prolongation operators as the transpose of the restrictions, i.e., R̄T

i : RN̄i → RN . We assume
that the restriction matrices are chosen so that

R̄i =
[
IN̄i

0
]
Πi ∈ RN̄i×N , (2)

where IN̄i
is the identity matrix of the dimension N̄i, 0 ∈ RN̄i×(N−N̄i) and Πi ∈ RN×N is a

permutation matrix (acting on the rows). Note that composing the prolongation and restriction we
have

R̄T
i R̄i = Π

T
i

[
IN̄i

0
0 0

]
Πi ∈ RN×N .

We also consider the analogous objects for the overlapping case W i ⊂ Wi (by enlarging each of the
subspaces W i and omitting the bar in the notation) and set Ni := dim(Wi) and the matrices

Ri =
[
INi0

]
Πi ∈ RNi×N ∈ RNi×N and RT

i Ri = ΠT
i

[
INi 0
0 0

]
Πi ∈ RN×N ,
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see, e.g., [7, 18] and also [15] for more details. Furthermore, we define the subdomain matrices Ai

as the restriction of A to Wi, i.e., Ai := RiAR
T
i , and we denote the complement of the indices in

the range of Ri by ¬i, e.g.,

A = Πi

[
Ai Ki

Li A¬i

]
ΠT

i ∈ RN×N , for i = 1 . . . , p.

We then set-up the multi-splitting matrices Mi as

Mi = Πi

[
Ai 0
× ∗

]
∈ RN×N , for i = 1 . . . , p,

where the blocks × and ∗ can be, in general, chosen arbitrarily but the common choice is to set
× = 0 and ∗ = A¬i ([17]) or ∗ = diag(A¬i) [3, 18]; for more details on multi-splittings, see the cited
works and the references therein.

Equipped with this notation, we can formulate the classical algebraic Schwarz methods – AS,
RAS and MS – in matrix form

u(n+1) = T⋆u
(n) + c⋆, or, equivalently, for the errors e(n+1) = T⋆e

(n), (3)

where ⋆ ∈ {AS,RAS,MS}, c⋆ ∈ RN are some constant vectors, e(n) := u − u(n) ∈ RN is the error
vector after n iterations and the matrices T⋆ are the iteration matrices of the respective methods,
given by1

TAS := IN −
p∑

i=1

RT
i A

−1
i RiA ≡ IN −M−1

ASA, TAS,θ := IN − θ

p∑
i=1

RT
i A

−1
i RiA ≡ IN −M−1

AS,θA,

TRAS := IN −
p∑

i=1

R̄T
i A

−1
i RiA ≡ IN −M−1

RASA, TMS :=
1∏

i=p

(
IN −RT

i A
−1
i RiA

)
≡ IN −M−1

MSA,

(4)

where we also included the (damped) additive Schwarz method (dAS) with a damping coefficient θ,
corresponding to the iteration matrix TAS,θ. Note that we also write each of the iteration matrices T⋆

in the form I −M−1
⋆ A so as to highlight the fact that the convergence of these stationary methods

can be further accelerated if we reformulate them as preconditioners for a Krylov method. The
preconditioners are then the matrices M−1

⋆ , where the inverse highlights that these preconditioners
are to be “applied” rather then “solved with”, i.e., the preconditioner matrix-vector action is given
for any vector v by v 7→ M−1

⋆ v. For the additive-based methods, the definition of M−1
⋆ is rather

straight-forward while for the multiplicative Schwarz the definition becomes seemingly artificial by
having

M−1
MS = (IN − TMS)A

−1, (5)

which can be further reformulated for practical use, see, e.g., [42, Section 14.3]. Based on (3), we see
that convergence (or divergence) for a particular choice of the method is determined by the spectral
radius ρ(T⋆), which has been studied in detail for certain classes of matrices A. To that end, we say
that a matrix A is symmetric, positive-definite or SPD (denoted by A ≻ 0), provided that

AT = A and vTAv > 0 for all v ̸= 0. (6)
1An equivalent multi-splitting formulation of these can be found in [18, Section 2] and [3, Sections 2 and 3].
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Denoting the spectrum of A by σ(A), (6) is equivalent to

AT = A and λ > 0 for all λ ∈ σ(A).

We say that A is a nonsingular M -matrix, provided that the off-diagonal elements of A are non-
positive and all elements of the inverse are non-negative, i.e., A− diag(A) ≤ 0 and A−1 ≥ 0, where
the inequalities are understood element-wise, see [4, Chapter 6] or [33, Section 2.5] for further details
and references. In the rest of the paper we will simply say an M -matrix meaning a nonsingular
M -matrix. We finish this section by recalling convergence results for the classical Schwarz methods
for these two classes of matrices.

Theorem 1 ([17, Lemma 2.8], [3, Theorem 3.8]). Let A ≻ 0 and let q ≤ p be the smallest number
of colors such that we can color all the p subspaces W1, . . . ,Wp so that if Wi ∩Wj ̸= {0}, then Wi

and Wj have different colors. Then

ρ(TMS) ≤ ∥TMS∥A < 1 and for θ < 1/q it holds that ρ(TAS,θ) ≤ ∥TAS,θ∥A < 1.

Theorem 2 ([17, Theorem 3.4], [18, Theorem 4.4], [3, Theorem 3.5]). Let A be an M -matrix and
q ≤ p be the smallest number of colors such that we can color all the p subspaces W1, . . . ,Wp so that
if Wi ∩Wj ̸= {0}, then Wi and Wj have different colors. Then

ρ(TMS) < 1, ρ(TRAS) < 1 and for θ < 1/q it holds that ρ(TAS,θ) < 1.

Remark 1. We note that Theorem 2 seemingly guarantees RAS convergence even for “no overlap”
case where Wi = W i for some (or all) i. At first this might seem contradictory to the analytic results
for the standard Laplace test problem, where Wi corresponds to discretization of the problem on Ωi.
But there is no contradiction as even the “no overlap” case in the algebraic sense corresponds to the
“h overlap” in the analytic sense of the subdomains Ωi, thanks to the Dirichlet boundary condition
enforcement.

We also note that there are other methods closely related to the metnioned ones, e.g., the RAS
method has number connected variants (e.g., WRAS,ASH,RASH,WRASH, see [18, Section 6] for
further references). We do not consider them in this paper.

3 Multiprecision computations

As we do not work with hardware with a wider selection of precision, the different precisions in
our multiprecision algorithms needs to be simulated in some way. The number of options available
is limited and both theoretically and practically, two stand out – the chop package [31] and the
advanpix package [37], both implemented in MATLAB. To the best of our knowledge, these are
considered the golden standard among the available software for simulating various precisions in
the numerical analysis and scientific computing community.

advanpix package Using advanpix, we can specify the number of accurate digits dℓ for each
computation, i.e., the package simulates the precision based on the decadic notation of numbers in
contrast to the binary notation that is commonly used in the hardware, software and also in the
IEEE and the definition of the standard precisions double, single and half, see [1]. Say we want to
simulate a half precision (fp16), which corresponds to uhalf ≈ 4.88×10−4. Using advanpix, we have
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to chose to have either four or five accurate digits, neither of which maps precisely onto the standard-
ized format of fp16. Moreover, advanpix does not include underflow/overflow treatment. However,
this allows to explore also “new” precisions which are not yet standardized or even used, e.g., six
or eleven accurate digits, and frames the computation precision as more of a “integer-continuous”
parameter. Moreover, the package is a highly optimized software that overwrites the standard (also
highly optimized) MATLAB functions to work with the desired number of accurate digits, e.g., the
MATLAB LU or QR factorizations for sparse matrices. Without exploiting these, many problems
become too computationally demanding (hence the commercial success of this package). In this
context we would also like to highlight that a lot of interest has been recently devoted to efficient
simulation of arbitrary precisions on GPUs with astonishing results. For example, although the
hardware of GPUs is highly optimized only for low-precisions, such as fp32, fp16 and even lower, a
clever way of simulation of fp64 on these GPUs using these low-precision formats was competitive
with (or even preferable to) the standard hardware implementation of fp64, see [39, 40, 41] and the
references therein. This opens doors to real possibility of efficiently simulating “new” low-precisions
in practice.

chop toolbox The chop toolbox is an open-source MATLAB toolbox2 developed for simulating
different precisions using the native double of MATLAB, essentially by removing a portion of the
mantissa of the result after each operation, corresponding to “rounding” back to the simulated
precision. For computations in single precision or lower, chop faithfully simulates the computation
in the precision (see [31, Section 3.1]) and can also simulate the underflow/overflow during the
computation. Although this toolbox outperforms many other options (see [31, Sections 5 and 6]), it
makes some computations prohibitively time-consuming, even after adapting it to sparse matrices.
Although it allows for arbitrary user-defined formats (defined by the number of bits allocated to the
exponent and the significand), we will restrict ourselves to the currently standard ones, summarized
in Table 1 below.

Signif. Exp. u xmin xmax

q52 5 2 1.25× 10−1 6.10× 10−5 5.73× 104

q43 4 3 6.25× 10−2 1.56× 10−2 2.40× 102

bfloat16 8 8 3.91× 10−3 1.18× 10−38 3.39× 1038

fp16 11 5 4.88× 10−4 6.10× 10−5 6.55× 104

fp32 24 8 5.96× 10−8 1.18× 10−38 3.40× 1038

fp64 53 11 1.11× 10−16 2.23× 10−308 1.80× 10308

Table 1:In most cases, the computationally most demanding part of Schwarz methods are the subdomain
solves, i.e., the operations including A−1

i . The issue of underflow/overflow is, in our opinion, an
important piece in multiprecision calculations and has been, at least partially, addressed in [32],
where the authors propose re-scaling procedures so that (close to) the full range of a given precision
is utilized (demonstrated for fp16). To be concrete, having a subdomain problem

Aiui = fi, (7)

(where we omit the iteration index to keep the notation simple) and a precision uℓ with the pos-
itive range [x

(ℓ)
min, x

(ℓ)
max], the authors propose several algorithms for calculating and using diagonal

2Towards the end of preparing the manuscript, the chop toolbox has been also released for python, see [9].
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matrices for row and column rescaling of (7) – let us denote them Dr
i and Dc

i (corresponding to R
and S in [32]). For any non-singular Dr

i and Dc
i we then rewrite (7) as

Aivi = µbi (8)

with
Ai := µDr

iAiD
c
i , bi := Dr

i fi, ui := Dc
ivi and µ ∈ R.

The goal is to take Dr
i , D

c
i so that |Dr

iAiD
c
i | ≲ 1 entry-wise and then take µ = νx

(ℓ)
max for some

ν ∈ (0, 1) so that
|Ai| ≡ |µDr

iAiD
c
i | ≲ x(ℓ)max.

A reasonable choice then is to take Dr
i and Dc

i as in [32, Algorithms 2.3 and 2.4], i.e., as the
maximum norms of the rows (and then the columns) of Ai. According to [32, Table 4.5], the choice
of ν = 0.1 (the authors use θ in their notation) is reasonable and we comment on this choice later.
For the system (8) we also rescale the right-hand side, namely we write

µbi =
∥bi∥∞
ν̂i

b̂i with b̂i := ν̂i
µ

∥bi∥∞
bi,

where, again, ν̂i ∈ (0, 1) allows us to tailor how close to x
(ℓ)
max we rescale the entries of the new

right-hand side vector b̂i. Altogether, we rewrote (7) into

Aiv̂i = b̂i, (9)

which we solve in the precision uℓ and then retrieve ui in the precision uw by calculating (also in
uw)

ui =
ν̂i

∥bi∥∞
Dc

i v̂i.

Importantly, the rescaling preserves signs of the entries of the matrix and hence Ai is an M -matrix
if and only if Ai is. It can be also adapted to preserve symmetry (see [32, Algorithm 2.5]) and then
it also automatically preserves diagonal dominance.

Remark 2. Since the advanpix toolbox is not open source, possible low-precision overflow/underflow
appearances, e.g., during the LU factorization, are treated automatically and without the user’s
knowledge. In other words, it is fair to say that in spite our best efforts, many experiments are carried
out without overflow/underflow errors, although we carry out the calculations so as to minimize their
appearances by appropriate scaling.

4 Algebraic analysis of multiprecision Schwarz methods

In this section we give analogous results to Theorems 1 and 2 when the subdomain solves A−1
i are

represented using a lower-precision in some way. The purpose of the numerical experiments here is
twofold – to demonstrate the theoretical results and also to build an intuition for and understanding
of the multiprecision Schwarz methods. Therefore, we will use the convergence properties (such as
number of iterations or the convergence factor) to compare the results with their “full precision”
counterparts, as opposed to, e.g., runtimes. All of the code used to produce these is available
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at https://github.com/MichalOutrata/mpSchwarz but, naturally, the code assumes that both the
advanpix as well as the chop toolboxes are available.

We approach the problem from an algebraic point of view, inspired by the results in [3, 17, 18],
with the primary goal of carrying out the subdomain solves – corresponding to A−1

i (or M−1
i ) – in

a lower precision uℓ, compared to the higher working precision uw. This direction is not explicitly
mentioned in either of the works but follows from the sections focusing on inexact solves; see [17,
Sections 2 and 3], [18, Section 7] and [3, Section 4]. Following the notation there, we will denote with
tildes quantities that have been obtained by precision-reduction in some sense, e.g., if we assume that
the matrix Ai is stored in the working precision uw and we then store it only in a lower precision
uℓ, the new matrix will be denoted by Ãi and replacing all Ai with Ãi in the definition of Ai

or T⋆ gives us Ãi or T̃⋆ (for ⋆ ∈ {AS,RAS,MS}). We emphasize that the symbol ∼ does not
mean that the quantity was obtained by the classic rounding procedure, quite on the contrary – we
always consider a particular way of obtaining Ãi from Ai that suits the situation and is clear from
the context. However, we keep a single notation for all of these cases (using ∼) to highlight the
lower-precision nature. We denote the error in the subdomain matrices by Ei, i.e., we have

Ãi = Ai + Ei. (10)

As is standard in the algebraic convergence theory of Schwarz methods, we are interested in prop-
erties of the splittings

Ai = Ãi −
(
Ãi −Ai

)
, i = 1, . . . , p . (11)

4.1 The general case

Assuming A is an M -matrix, we recall a sufficient condition for the convergence of (damped) AS,
RAS and MS is to have

Ã−1
i ≥ 0 and Ã−1

i

(
Ãi −Ai

)
= Ã−1

i Ei ≥ 0. (12)

These conditions characterize when the splitting (11) is weak regular (of the first type, see [18,
Section 4]) and thus if (12) holds for all i = 1, . . . , p, then (damped) AS, RAS and MS with A−1

i

(M−1
i ) replaced with Ã−1

i (M̃−1
i ) converge, i.e., ρ(T̃⋆) < 1.

In light of the rescaling (7) to (9), we see that the rounding error is committed at the level of
the rescaled system, i.e., instead of solving (9) we solve

Ãiv̂i = b̃i,

where Ãi (and b̃i) is obtained by a rounding technique of our choice applied to Ai (and b̂i). In
other words, we have

Ãi = µ−1(Dr
i )

−1Ãi(D
r
i )

−1 (13)

and so the error matrix Ei is given by

Ei = Ãi −Ai = µ−1(Dr
i )

−1
(
Ãi −Ai

)
(Dr

i )
−1 = µ−1(Dr

i )
−1Fi(D

r
i )

−1,

where we define Fi := Ãi −Ai as the rounding error matrix.
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Here we would like to recall a useful observation for diagonal re-scaling of general stationary
iterative methods3 – if the stationary iterative method is based on a splitting A = M − N such
that the entries of M are multiples of the corresponding entries of A, then the iteration matrices
for A and D1AD2 are similar (i.e., have the same convergence factor) for any non-singular diagonal
matrices D1, D2. On one hand, this shows that for uℓ = uw, the re-scaling above doesn’t affect the
asymptotic convergence rate in our case. On the the other, we are clearly interested in cases where
the rounding does make a difference and through this observation we see that we can expect the
convergence factor to be affected by the re-scaling.

Revisiting (12), a direct calculation shows that the weak regular splitting conditions are invariant
with respect to diagonal scaling with positive entries, i.e., the conditions (12) are equivalent to

Ã−1
i ≥ 0 and Ã−1

i

(
Ãi −Ai

)
= Ã−1

i Fi ≥ 0. (14)

The first ingredient for the analysis of (14) is rewritting Ã−1
i as

Ã−1
i = A−1

i

(
I + FiA−1

i

)−1
, (15)

and expanding the inverse matrix there into its Neumann series under the assumption

∥A−1
i Fi∥ < 1, (16)

in some induced norm. Assuming (16), the Neumann serie expansion reads

Ã−1
i = A−1

i

+∞∑
k=0

(
−FiA−1

i

)k
, (17)

and we further rearrange it as

Ã−1
i = A−1

i

+∞∑
k=0

(
−FiA−1

i

)k
= A−1

i

(
I − FiA−1

i

)
+A−1

i

(
I − FiA−1

i

)
FiA−1

i FiA−1
i + . . .

= A−1
i

(
I − FiA−1

i

) +∞∑
k=0

(
FiA−1

i

)2k
=
(
A−1

i −A−1
i FiA−1

i

) +∞∑
k=0

(
FiA−1

i

)2k
.

(18)

In order to ensure (14) we will focus on ensuring Fi ≥ 0 as well as Ã−1
i ≥ 0. Notice that the latter

should be natural as we have A−1
i ≥ 0 and thereby also A−1

i ≥ 0, while the condition Fi ≥ 0 can be
accomplished, at least in theory, by virtue of choosing an appropriate uℓ and the rounding procedure.
In fact, assuming Fi ≥ 0 the natural condition for ensuring also Ã−1

i ≥ 0 (and hence (14)) becomes

A−1
i ≥ A−1

i FiA−1
i , (19)

a second condition on the choice of uℓ in addition to (16). Notice that both (16) as well as (19)
are in some sense generalizations of the standard relative rounding error assumption

|Fi| ≤ uℓ|Ai|, (20)
3We came across this observation in [29, Section 17.2, below eqn. (17.3)] but this is likely not the original reference.
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which is generally guaranteed (the absolute value is to be understood component-wise). Also,
similarly to [2, Sections 4 and 5], both (16) and (19) invite us to choose (uℓ)i for each subdomain
independently, based on the relevant quantities or their estimates4. We keep (16) and (19) as
assumptions, coupling the subdomain problems and the choice of the lower precision uℓ and move
our attention to the condition Fi ≥ 0.

If we use the standard rounding, then we are unlikely to satisfy Fi ≥ 0 except for some special
cases. However, the process of rounding is very often fully under our control. Since by definition
the off-diagonal entries of Ai are non-positive while its diagonal entries are non-negative, a simple
way to ensure Fi ≥ 0 is to take Ãi as the “sign-informed round up” of Ai.

To this end we assume that for any precision uℓ we have at our disposal the functions rduℓ
and

ruuℓ
that round towards zero (down) and towards plus/minus infinity (up)5. We then introduce

the rounding procedure roundMmtrx() that for any matrix X gives its low-precision approximation
roundMmtrx(X) given by

(roundMmtrx(X))mn ≡ (roundMmtrx(X,uℓ))mn :=

{
ruuℓ

((X)mn) , if (X)mn > 0,

rduℓ
((X)mn) , if (X)mn < 0.

Taking
Ãi = roundMmtrx(Ai), (21)

we get Fi ≥ 0 and obtain a convergent multiprecision Schwarz methods under the assumptions (16)
and (19); we summarize these results in Theorem 3 below.

Theorem 3. Let A be an M -matrix and q ≤ p be the smallest number of colors such that we can
color all the p subspaces W1, . . . ,Wp so that if Wi∩Wj ̸= {0}, then Wi and Wj have different colors.
Moreover, assume that for each i = 1, . . . , p we replace the subdomain solver A−1

i in a precision uw
with the subdomain solver Ã−1

i in a precision uℓ, with uw < uℓ, obtaining the multiprecision (damped)
AS, RAS and MS methods with the iteration matrices T̃AS,θ, T̃RAS and T̃MS, respectively. Taking
Ãi as in (13) with Ãi given as in (21), if (16) and (19) are satisfied, then

ρ(T̃MS) < 1, ρ(T̃RAS) < 1 and for θ < 1/q it holds that ρ(T̃AS,θ) < 1,

and the multiprecision versions of the classical Schwarz methods are convergent.

Following [17, Sections 4], [18, Section 7] and [3, Section 4], we also obtain the comparisons for
different choices of uℓ. To be more specific, having an M -matrix X and two different low-precisions
u
(1)
ℓ ≤ u

(2)
ℓ with uw ≤ u

(1)
ℓ ≤ u

(2)
ℓ , we obtain

roundMmtrx(X,u
(1)
ℓ ) ≤ roundMmtrx(X,u

(2)
ℓ ),

and hence (
roundMmtrx(X,u

(1)
ℓ )
)−1

≥
(
roundMmtrx(X,u

(2)
ℓ )
)−1

.

4In [2], the authors work with a similar idea but calculate explicitly the analogue of the inverses Ã−1
i in different

precisions based on their conditioning. This is somewhat complementary to our approach as our interest lies in the
analysis of the resulting method rather than in the practical aspect, which has been covered in [2] and we do not
comment further on how to choose uℓ (or (uℓ)i) for the subdomain problems.

5In the chop toolbox, these are already implemented and for the advanpix package, these are straight-forward to
implement as we deal with the precision uℓ corresponding to dℓ accurate decimal digits (as opposed to dealing with
bits in the case of chop).
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Using this for the Schwarz methods, we obtain

ρ
(
T̃
⋆,u

(1)
ℓ

)
≤ ρ

(
T̃
⋆,u

(2)
ℓ

)
, where ⋆ ∈ {AS,RAS,MS}. (22)

In other words, the better precision, the faster convergence. The important questions then become

• Are the conditions (16) and (19) in some sense sharp or descriptive in the context of conver-
gence of the multiprecision Schwarz methods?

• When is (22) strict?

• Out of those uℓ for which (22) is strict, which should we use, i.e., to what extend are there
diminishing returns as we approach equality in (22)?

Next, we investigate these questions numerically on three model problems coming from a dis-
cretization of a reaction-advection-diffusion equation. Taking the unit square, i.e., Ω = {x =
[x1, x2]

T ∈ [0, 1]2}, we consider the partial differential equation

Lu = f in Ω and u = g on ∂Ω, (23)

with the differential operator L given by

Lu := η(x)u− div (α(x)∇u) + b(x) · ∇u. (24)

We take the coefficient functions η(x), α(x) and b(x) = [b1(x), b2(x)]
T as follows:

Problem 1 (inspired by [26, Figure 2.1])

η(x) := x21 cos(x1 + x2)
2, α(x) := 20(x1 + x2)

2ex1−x2 and
b1(x) := x2 − 0.5,

b2(x) := x1 − 0.5.

Problem 2 (inspired by [19, Section 4.1])

η ≡ 0, α ≡ 1 and
b1(x) := β(x1(x1 − 1)(1− 2x2)),

b2(x) := −β(x2(x2 − 1)(1− 2x1)),
with β = 100.

Problem 3 (based on Problem 2)

η ≡ 0, α(x) =

{
106 if ∥x− [0.5 0.1]T ∥ < 0.25,

1 otherwise,
and

b1(x) := β(x1(x1 − 1)(1− 2x2)),

b2(x) := −β(x2(x2 − 1)(1− 2x1)),

again with β = 100. To discretize we use the standard 5-point stencil finite difference scheme,
adapting some of the code from [26] and obtain systems of linear equations (1) with A being a
non-symmetric M -matrix. We then partition A into two overlapping subdomain problems, taking
the size of the overlap block to correspond to the bandwidth of A, i.e., we consider two overlapping
subdomains Ω1,Ω2 ⊂ Ω with overlap width6 O(h). We take our right-hand side vector f and our
initial approximation vector u(0) as random vectors with entries in (0, 1).

6As a result, we expect the convergence factor of Schwarz method to deteriorate as N increases, see [18, Section
5] and [3, Section 5].
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Figure 1: Top: the 2-norm of the error of the multiplicative Schwarz method for different choices of
uw using the chop toolbox. For fp32 and fp64 the graphs are indiscernible from each other. Bottom:
the observed convergence factor ρconv for different methods and choices of uℓ; if the conditions (16)
and (19) are satisfied for both subdomain i = 1, 2 for a certain uℓ, then the marker is filled. For
example, for Problem 1 the conditions (16) and (19) are satisfied for both i = 1, 2 starting from
fp16.

First we fix N = 2500 and show the convergence curves and the observed convergence factor
ρconv in Figure 1 for the multiplicative Schwarz method and the standard low-precision formats in
the chop package (see Table 1 above), adjusting the scaling from Section 3 so as to use as much of
the available range of each precision while not overflowing during the computations. We see that the
methods in fact converge in all of the considered precisions, although the conditions (16) and (19)
are satisfied only for fp16, fp32 and fp64. Moreover, once the conditions (16) and (19) are satisfied,
they are also satisfied for higher precisions and, more importantly, the observed convergence factor
ρconv (calculated based on the convergence curves) essentially becomes invariant to increasing the
precision further. In other words, we get very little additional computational benefits (within the
first 60 iterations) by considering higher precisions once the conditions (16) and (19) are satisfied.
This suggests that the conditions (16) and (19) offer a good guidance on the a-priori choice of the
working proecision uw.

We illustrate this further with the analogous experiment but run using the advanpix toolbox,
which allows us finer tuning of the considered precision for the price of foregoing the control over
underflow/overflow situation (however since we encountered no overflow with chop, this seems not
too worrying) in Figure 2. We see that not only the observations from Figure 1 still hold true, but
the case for the use of the conditions (16) and (19) as predictors for the suitable precision uℓ is
further strengthened.

12



Figure 2: Top: the 2-norm of the error of the multiplicative Schwarz method for different choices of
dℓ, using the advanpix toolbox. For dℓ ≥ 6 the graphs are essentially indiscernible from the green
one for dℓ = 5. For Bottom: the observed convergence factor ρconv for different methods and choices
of dℓ; if the conditions (16) and (19) are satisfied for both subdomain i = 1, 2 for a certain dℓ, then
the marker is filled. For example, for Problem 1 the conditions (16) and (19) are satisfied for both
i = 1, 2 from dℓ = 4 onward.

Remark 3. Numerically, the experiments suggest that (16) is generally weaker than (19), although
we have not been able to establish this as a theoretical result. However, we have never observed this
discrepancy to be large, using either chop (e.g., for chop the difference is only present for bfloat16
and fp16, where (16) was - for some problems and mesh-sizes - satisfied for bfloat16, while (19)
wasn’t) or advanpix (again, (16) was rarely satisfied for dℓ = 3, while (19) wasn’t).

We further illustrate the tipping point of the conditions (16) and (19) being met or violated
by plotting the error of the multiplicative Schwarz method throughout the initial iterations for
different choices of uℓ for Problem 1 in Figure 3, again using chop with overflow enabled (but not
encountered due to the rescaling). In full precision, we expect the classical two-domain profile of the
largest eigenmode of the matrix TMS, smooth on each of the subdomains. Indeed, for fp16, fp32
and fp64 that is what we observe. However, for q52 and q43 the ridge in the middle that separates
the two subdomains never forms and for bfloat16 it takes several iterations to establish to the
same extend. In other words, for too low precision uℓ the method effectively looses its continuous
level interpretation as a domain decomposition method, although it is still a reasonably effective
(even convergent) smoother. Importantly, satisfying the conditions (16) and (19) is visible not only
in the rate of convergence but also in the nature of it.

The above observations remained true when changing

• the chop and advanpix toolboxes,
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• the problem (we experimented with various settings of reaction-advection-diffusion problems
such that A is an M -matrix),

• the method (although, e.g., for dAS we observe an initial period before the error converges to
the dominant eigenmode),

• the initial approximation (the only change is in the initial period before the error converges
to the dominant eigenmode).

Figure 3: The errors of the multiplicative Schwarz method used for Problem 1 with N = 2500 and
chop toolbox after 1, 2 and 3 iterations using q43 (top), bfloat16 and (middle) fp16 (bottom). Up
to scaling, the error for q52 is analogous to the top row and the errors for fp32 and fp64 are are
analogous to the bottom row.

As we kept the problem size relatively small so far, we next experiment also with varying N .
However, letting N grow, two numerical limitations come forward – (i) the chop toolbox becomes
too slow and (ii) the verification of the condition (19) becomes untenable. Hence, for the following
experiments we will use only the advanpix toolbox and only verify the condition (16) (essentially
testing whether the observation in Remark 3 holds true also for larger N).

All of the above characteristics remained true with the only change being the first dℓ so that
the condition (16) is satisfied. We show these for N ∈ {2500, . . . , 108900} in Figure 4. Notably, we
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Figure 4: We show ρconv of the Schwarz methods for dℓ = 1, 2, . . . , 16 and different problem sizes
N . We highlight the first dℓ for which the condition (16) is satisfied (it is also satisfied for all the
following ones).

see that after the first dℓ such that (16) is satisfied there is little to no change in using additional
precision, precisely as observed above for N = 2500. In other words, the dominant eigenmodes of
T⋆ with ⋆ ∈ {AS,RAS,MS} seem to be well-captured already with limited precision and the other
eigenmodes are not too sensitive with respect to small perturbations of the subdomain solves and
stay “non-dominant”. In addition, the same type of behavior as showed in Figure 3 is present for
larger N , i.e., for too low precision the methods lose their two-domain nature, converge extremely
slow but remain effective smoothers.

We see that the convergence factors ρconv are remarkably uniform for the different problems as
well as with respect to changing the solve precision uℓ. The condition (16) is satisfied either at dℓ = 4
or dℓ = 5, also depending on the size of the problem and once the condition is satisfied, then ρconv
stabilizes around this final value. In other words, based on these experiments the condition (16) still
governs the required precision. We note that this is perhaps not too surprising as the condition (19)
is clearly only a sufficient one – if it does not hold, then the entries of the matrix Ã−1

i in (18) are
given as an oscillating sum (rather than a sum of only non-negative numbers), which still can easily
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sum-up to a non-negative number. On the other hand, if (16) doesn’t hold, then there’s no easy
way around it.

We remark that in both [2, 44] the authors use the condition numbers of the subdomain matrices
for choosing uℓ. The condition numbers of the subdomain matrices Ai for both Problem 1 and 2
are fairly small within the range (103, 105), while for Problem 3, the subdomain matrices Ai have
condition numbers within the range (109, 1011). We see that the conditioning of the subdomain
problem and the precision uℓ seems to interact very little. This remained true for other, similarly
focused experiments. We note that the rescaling process does explain part of this observation but
we note that the analogous plots for experiments without the rescaling, i.e., taking D

(r,c)
i = INi , look

fairly similar, although the plots are “less smooth”.
Notice that as N increases ρconv tends towards 1. This is a feature of Schwarz methods – the

convergence factor depends on the width of the overlap of the subdomains Ω1 and Ω2. As noted
above, in our setting the overlap width is proportional to h ∼ 1/N and therefore this effect is
expected even in full precision, which is clearly visible in Figure 4.

In addition, note that in condition (16) the 2-norm can be replaced by any consistent and
equivalent matrix norm and the Neumann series result is still valid; see, e.g., [38, Section 1.3,
Lemma 1.3.10]. In other words, the computationally unfeasible condition (16) can be replaced by

∥A−1
i Fi∥2F < 1, or ∥A−1

i Fi∥21 < 1.

Although these are clearly preferable for the purpose of determining the number of digits dℓ (or
dℓi , i = 1, . . . , p), see [2], they might give worse indication of whether or not a given precision is
suitable for a given N .

When running Schwarz methods, we can see the effect of the lower precision uℓ only on the
dominant eigenmode and eigenvalue of T⋆, as one expects for a fixed-point iteration. However,
in practice we usually accelerate Schwarz methods using Krylov subspace methods, i.e., we use
Schwarz methods as preconditioners for Krylov methods. In order to be successful preconditioners,
calculating in uℓ instead of uw on the subdomains should not make eigenbasis much more ill-
conditioned or the spectrum much more “spread out”, otherwise a notable slowdown of GMRES
convergence (compared to the appropriate full-precision Schwarz method) can occur. In other
words, the above experiments do not necessarily suggest that the multiprecision Schwarz methods
will be also efficient when used as precnoditioners. We investigate that next numerically and use the
preconditioned GMRES with multiprecision dAS, RAS and MS as the left preconditioners and with
preconditioned relative residual tolerance 10−12, zero initial approximation and maximum number
of iterations set to 100. We show the number of GMRES iterations in Figure 5.

We observe that the effect of the low-precision does not meaningfully disrupt the number of
iterations that the preconditioned GMRES needs to reduce the preconditioned relative residual to
the tolerance 10−12. Moreover, we see the same diminishing returns as we did for the convergence
factors of the methods in Figure 4 and these occur mostly at the same thresholds, i.e., for the same
precisions uℓ. We again observe the increase of the iterations as N increases for similar reasons as
in Figure 4. While we do not consider the analysis of the multiprecision preconditioned GMRES
method, we refer the reader to [6] for analysis and further references.

Summarizing, we can say that we observe that in the model examples four or five digits suffices
to achieve virtually indistinguishable results to full double precision, i.e., running fp32 (or even
fp16 for smaller N) should be up to twice as fast (four times as fast) to the standard fp64 Schwarz
method without any meaningful drawback. Moreover, the results showcase that running fp16 or
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Figure 5: The number of the preconditioned GMRES iterations to reduce the relative residual below
10−12 capped at 100.

even bfloat16 should result in a negligible slowdown while offering up to a further two-fold speed-
up.

4.2 The symmetric case

We consider now symmetric M -matrices, sometimes also called Stieltjes matrices (Stieltjes matrices
are themselves symmetric positive definite, see [4, Chapter 6, Theorem 2.3 (D16)]).

First, we would like to highlight that Theorem 3 applies to this case “as is”. Moreover, if the
rescaling and rounding is done symmetrically (or if we store and work only on, say, the upper-
triangular part of the matrix), then the symmetry is preserved as well. Notably, to achieve sym-
metrical scaling, the proposed rescaling algorithm needs to be symmetrized, leading to an iterative
procedure, see [32, Algorithms 2.5]. Moreover, our rounding routine can be further tailored to
preserve other useful properties of the subdomain matrices.

For example, assuming A has dominant entries on the diagonal, in the sense that aii ≥ |aij | for
all i, j, [32, Algorithms 2.5] converges in a single step, yielding D

(r)
i = D

(c)
i = diag(a

−1/2
11 , . . . , a

−1/2
NiNi

)

with D
(r)
i AiD

(c)
i having all ones on the diagonal and the rest of the entries being bounded in absolute

value from above by one. Then, taking ν as some power of two (or other number we represent exactly
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in uℓ), we can use the rounding routine

(roundDiag(X))mn :=

{
(X)mn , if m = n,

rduℓ
((X)mn) , if m ̸= n,

(25)

in order to preserve this property (or, e.g., diagonal dominance) also for the rescaled, rounded
matrix Ãi. Either way, any reasonable rounding should satisfy FTi = Fi (as Ai is symmetric), which
will be enough for now.

Next, we turn our attention to the classical convergence theory for the algebraic Schwarz methods
for the symmetric, positive-definite case. As the RAS method is inherently non-symmetric, it is
standard to consider the convergence theory only for the (damped) AS and MS methods and as a
result we focus only on these two classes7. For these, the driving force behind Theorem 1 is the
so-called P -regular Splitting Theorem, see, e.g., [38, Theorem 7.1.9]. The core assumption there
becomes that the splittings in (11) are P -regular splitting, i.e., that

ÃT
i + Ãi −Ai ⪰ 0. (26)

In order to satify (26), the standard assumption in the literature is Ãi ≻ Ai (see, e.g., [3, equation
(39), p.621]) but, unfortunately, this is not an “easy to ensure condition” for a specific rounding
routine. Instead, we first observe that for a symmetric scaling, i.e., the case of D(r)

i = D
(c)
i =: Di,

we get
ÃT

i + Ãi −Ai = µ−1D−1
i

(
ÃT

i + Ãi −Ai

)
D−1

i = µ−1D−1
i

(
Ãi + Fi

)
D−1

i ,

and (26) becomes equivalent to
Ãi + Fi ⪰ 0,

which is ensured by the two following conditions

Ãi ≻ 0 and λmin(Ãi) ≥ |λ−∞(Fi)| , (27)

where λmin(Ãi) ≥ 0 is the smallest eigenvalue of Ãi (as we assume there Ãi ≻ 0) and λ−∞(Fi) is
the smallest eigenvalue of Fi (on the real line, not in absolute value, since FTi = Fi). Notice that
these conditions differ substantially as we allow for the rounding error matrix to be indefinite.

The first condition in (27) can be ensured by rounding as in Section 4.1 so that Ãi is still
a Stieltjes matrix and hence symmetric, positive-definite. The second condition can be further
expanded on, using the standard perturbation theory of eigenvalues for symmetric matrices (as
both Ai and Fi are symmetric). Indeed, using Weyl’s Theorem (see) for Ãi = Ai + Fi, we obtain

λmin(Ãi) ≥ λmin(Ai) + λ−∞(Fi), (28)

so that to ensure the second condition in (27), it is enough to require

λmin(Ai) ≥ 2 |λ−∞(Fi)| . (29)

We summarize the results in the following theorem.
7Some theory for SPD matrices has been developed for variants of the RAS method, see [8], and recently, the

convergence of RAS for SPD matrices was studied in [43] using the variational methods for a simple model problem.
In general, convergence of RAS is usually addressed in combination with the particular problem, see [15], or based
on other properties of the system matrix, see [18].
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Theorem 4. Let A be a Stieltjes matrix and q ≤ p be the smallest number of colors such that we can
color all the p subspaces W1, . . . ,Wp so that if Wi∩Wj ̸= {0}, then Wi and Wj have different colors.
Moreover, assume that for each i = 1, . . . , p we replace the subdomain solver A−1

i in a precision uw
with the subdomain solver Ã−1

i with uw < uℓ, obtaining the multiprecision (damped) AS and MS
methods with the iteration matrices T̃AS,θ and T̃MS. Taking Ãi as in (13) with Ãi given as in (21)
with a symmetric scaling, if (16), (19) and (29) are satisfied, then

ρ(T̃MS) < 1 and for θ < 1/q it holds that ρ(T̃AS,θ) < 1.

and the multiprecision versions of the classical Schwarz methods are convergent.

We note that analysis for SPD matrices and multiprecision additive Schwarz methods has been
considered elsewhere; see [47, 2, 44, 27]. However, in all of these papers the authors consider the
(non-damped) AS as a preconditioner for CG and hence the analysis and/or numerical investigation
focus on the preconditioned CG method, e.g., using variational techniques that allow establishing a
bound on the condition number of the preconditioned system. We also note that the assumptions
look somewhat similar8. Indeed, to get a coarser version of (29) we can replace λ−∞(Fi) with
− max

λ ∈ σ(Fi)
|λ| ≡ −ρ(Fi) so that instead of (29) we would require

λmin(Ai) ≥ 2ρ(Fi). (30)

Since we still have the entry-wise comparison of uℓ|Fi| and |Ai|, see (20), and we have knowledge of
the sign distribution of the entries of these matrices, we could arrive at some comparison theorem
for ρ(Fi) and ρ(Ai), so that (30) would relate the condition number ρ(Ai)/λmin(Ai) with the used
precision uℓ, obtaining the type of condition we encounter in [44, Section 3.2.2, equation (14)] or [2,
Section 5]. The above derivation illustrates that our results are more nuanced compared to the
existing ones, also in treating Schwarz methods (and their convergence) as standalone methods.
We focus on more particular systems (in the sense of the M -matrix property, which together with
symmetry constitutes a subclass of SPD matrices) compared to the existing literature and we
carefully exploit this extra information by the specialized rounding techniques.

Next, we show results analogous to the experiments considered in Section 4.1. We consider the
same problem as in (23)–(24) but omit the advection terms so that we obtain Stieltjes matrices
after discretization, using the following parameters.

Problem 4 (analogue of Problem 1)

η(x) := x21 cos(x1 + x2)
2, α(x) := (x1 + x2)

2ex1−x2 and b1(x) = b2(x) := 0.

Problem 5 (analogue of Problem 2)

η(x) := 500x1 + x2, α(x) := 1 + 9(x1 + x2) and b1(x) = b2(x) := 0.

8Compare [44, equations (12) and (14)] and [2, Section 5] with (16) and (29).
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Problem 6 (analogue of Problem 3)

η ≡ 0, α(x) =

{
106 if ∥x− [0.5 0.1]T ∥ < 0.25,

1 otherwise,
and b1(x) = b2(x) = 0.

We note that for Problem 4 we added non-constant reaction and diffusion coefficients (otherwise
omitting the advection term leads to the standard Poisson problem).

The same questions as before are of interest. We fix N = 2500 and show the convergence curves
and the observed convergence factor ρconv in Figure 6 (using the chop toolbox) and Figure 7 (using
advanpix toolbox). We draw very similar conclusions to the ones in Section 4.1. We note that the
additional condition (29) was almost always weaker than (19) and comparable to (16). However,
just as in the non-symmetric case in Section 4.1, the differences were small (e.g., for fp16 and
bfloat16 for chop or for neighboring precisions for advanpix).

Figure 6: Top: the 2-norm of the error of the multiplicative Schwarz method for different choices
of uw using the chop toolbox. For fp32 and fp64 the graphs are indiscernible from each other.
Bottom: the observed convergence factor ρconv for different methods and choices of uℓ; if the
conditions (16), (19) and (29) are satisfied for both subdomain i = 1, 2 for a certain uℓ, then
the marker is filled. For example, for Problem 4 the conditions (16), (19) and (29) are satisfied for
both i = 1, 2 starting from fp16.

In Figure 8 we plot the error of the multiplicative Schwarz method at iterations 1, 2 and 3 for
different choices of the precision uℓ for Problem 5 and see, generally speaking, similar results to
Figure 3. Our experience with dAS and RAS is fairly similar.

Looking at the observed convergence factors ρconv in Figure 9, similarly to the non-symmetric
case, the dominant eigenmodes of T⋆ with ⋆ ∈ {AS,RAS,MS} appear to be well-captured already
with limited precision, e.g., dℓ = 4 ∼ 6, and the other eigenmodes are not too sensitive with respect
to small perturbations of the subdomain solves and stay “non-dominant”.
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Figure 7: Left: the 2-norm of the error of the multiplicative Schwarz method for different choices
of dℓ. Right: the observed convergence factor ρconv for different methods and choices of dℓ; if the
conditions (16), (19) and (29) are satisfied for both subdomains i = 1, 2 for a certain dℓ, then the
marker is filled.

The theoretical results only hold if the all of the conditions (16), (19) and (29) hold true but the
model problems suggest that either of the conditions (16) or (29) give a good indicator. However,
we note that the condition (29) becomes much more pessimistic, if we omit the re-scaling, e.g., if we
take D(r,c)

i = INi for Problem 6, then (29) is satisfied only for dℓ ⪆ 10, i.e., long after the convergence
factor has in fact stabilized at the final value. The same is true if we replace the condition (29) with
a cruder version relating to the condition number of Ai, see (30) and below. The condition (16),
however, has been fairly robust, localizing fairly accurately the optimal dℓ regardless of the employed
scaling. Also, similarly to the non-symmetric case, the convergence factor graph becomes notably
“less smooth” but otherwise qualitatively similar. The “non-smoothness” of the convergence factor
for Problem 6 and the smallest mesh resolution, i.e., N = 2500 also stands out. The reason is not
due to the low-precision use – the algorithm has simply essentially converged after 60 iterations as
we have 0.5560 ≈ 2.6× 10−16; this is also easy to check by inspecting the error plots directly.

Last, we use the preconditioned GMRES with multiprecision dAS9, RAS and MS as the left
preconditioners and with relative residual tolerance 10−12, zero initial approximation and maximum
number of iterations set to 100. We show the GMRES convergence curves and the number of
iterations in Figure 10. We see that the number of iterations again stays mostly stable with respect
to changing dℓ for a fixed N and, moreover, the conditions (16) or (29) still work as a reasonably
accurate indicator for the choice of the number of digits dℓ.

9In practice, we would take advantage of the symmetry of the dAS as a preconditioner and would run a left-
preconditioned CG. Here we use GMRES simply to keep the preconditioner results comparable to all of the other
methods.
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Figure 8: The errors of the multiplicative Schwarz method used for Problem 5 with N = 2500
during the initial iterations using q43 (top), bfloat16 and (middle) fp16 (bottom). Up to scaling,
the error for q52 is analogous to the top row and the errors for fp32 and fp64 are are analogous to
the bottom row.

5 Comparison of standard and multiprecision Schwarz methods

So far we have studied multiprecision Schwarz methods as solvers and provided convergence con-
ditions based on the iteration operator of the multiprecision Schwarz methods. However, another
approach would be to use perturbation theory for the analysis, and in fact, for the case of Schwarz
methods as a preconditioners this seems to be a more viable path.

In this section we compare the convergence of the “exact" method, i.e., with uℓ = uw, say, double
precision, and that with the multiprecision approach. We consider the general, non-symmetric case
and first focus on the easier-to-analyze additive methods, i.e., (damped) AS and RAS, and comment
on the extension for the multiplicative case later.

Additive Schwarz methods We start by assuming the set-up of Section 4.1, namely, similarly
to (15) we can write

Ã−1
i −A−1

i = µD
(c)
i

(
Ã−1

i −A−1
i

)
D

(r)
i = µD

(c)
i

(
(I +A−1

i Fi)
−1 − I

)
A−1

i D
(r)
i ,
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Figure 9: We show ρconv of the Schwarz method for dℓ = 1, 2, . . . , 16 and different problem sizes N .
We highlight the first dℓ for which the conditions (16) and (29) are satisfied by (or by ).

and denoting Ei := D
(c)
i

(
(I +A−1

i Fi)
−1 − I

)
(D

(c)
i )−1 we get

Ã−1
i −A−1

i = EiA−1
i . (31)

As a result, if we assume10

∥A−1
i Fi∥ ≤ ϵ <

1

2
, (32)

for some ϵ ∈ (0, 1/2), then

∥Ei∥ =

∥∥∥∥∥D(c)
i

(
+∞∑
k=1

(−1)k
(
A−1

i Fi
)k)

(D
(c)
i )−1

∥∥∥∥∥ ≤ κ
(
D

(c)
i

)
ϵ

1

1− ϵ
< 2ϵκ

(
D

(c)
i

)
,

and so
∥Ã−1

i −A−1
i ∥ = 2ϵκ

(
D

(c)
i

)
∥A−1

i ∥, (33)

10This assumption is analogous to (16). In fact, the derivations requiring (16) can be carried out analogously even
if we assume (32) instead of (16) but the derivation becomes somewhat more lengthy.
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Figure 10: The number of the preconditioned GMRES iterations to reduce the relative residual
below 10−12 capped at 100.

where κ(·) denotes the condition number with respect to the norm ∥ · ∥. In other words, the (small)
perturbation of the scaled subdomain matrices can perturb the subdomain solves proportionally to
the given subdomain solve norm, i.e., to ∥A−1

i ∥, and to the condition number κ
(
D

(c)
i

)
of the column-

scaling matrix. This shows that in the ideal scenario, we either get a well-scaled subdomain matrices
or we can mostly fix the scaling by row-scaling (recall that, conveniently, the row-scaling takes
precedence in [32, Algorithms 2.3 and 2.4]). Also, notice that (32) is similar to the assumption [44,
equation (12)], i.e., to the norm-wise equivalent of (20) but for the inverses and after the scaling.

Next, we insert (32) into the definition of the additive Schwarz methods in (4) and get

M̃−1
⋆ A = M−1

⋆ A+ E⋆ where E⋆ :=


θ

p∑
i=1

RT
i EiA

−1
i RiA, for (damped) AS,

p∑
i=1

R̄T
i EiA

−1
i RiA, for RAS.

(34)

Recalling the matrix definitions in (2) and below, we can write

A−1
i RiA = A−1

i

[
INi 0

]
ΠiΠ

T
i

[
Ai Ki

Li A¬i

]
Πi =

[
INi A−1

i Ki

]
Πi.
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and hence

E⋆ =


AS, θ : θ

p∑
i=1

ΠT
i

[
Ei EiA−1

i Ki

0 0

]
Πi,

RAS :
p∑

i=1
Π

T
i

[
(Ei)1:N̄i,:

(
EiA−1

i Ki

)
1:N̄i,:

0 0

]
Πi.

In fact, we can further rewrite this as

E⋆ =



AS, θ : θ
p∑

i=1
ΠT

i

[
Ei 0

0 0

][
INi A−1

i Ki

0 0

]
Πi,

RAS :
p∑

i=1
Π

T
i


[
(Ei)1:N̄i,:

0N̄i+1:Ni,:

]
0

0 0

[INi A−1
i Ki

0 0

]
Πi,

(35)

where we clearly see the main difference between the two methods in the “double-counting of the
overlap”, see [15, 18]. The structure also highlights that the (damped) additive Schwarz can be
written in a purely block diagonal preconditioner while the restricted version cannot.

Next, we proceed with the analysis for the simpler case of only two subdomains, i.e., p = 2,
which directly generalizes to the case of p subdomains with q = 1, i.e., to the “no cross-points” case.
In such case we can choose a global permutation matrix Π so that

EAS,θ = θΠT

[
E1 0
0 E2

] [
IN1 A−1

1 K1

A−1
2 K2 IN2

]
ZΠ, (36)

where Z acts as the “zipper” for the overlap, i.e.,

Z =


IN̄1

IN1−N̄1

IN2−N̄2

IN̄2

 .

We notice that this way we managed to factor the error matrix E
(k)
AS,θ so that the first term carries

the multiprecision error while the second term carries the Schwarz-method structure. As a result,
bounding the norm of E

(k)
AS,θ and EAS,θ becomes easier11. Assuming (32) for both i = 1, 2 and

noticing that ∥Z∥ ≤ 2 we observe that

∥EAS,θ∥ ≤ 2ϵκ
(
D

(c)
i

)
∥M−1

AS,θA∥. (37)

Unfortunately, similar approach does not work for the restricted additive Schwarz method as the
“structure matrix” in (35) is that of the additive Schwarz method, rather than of the restricted
version.

A natural next step would be to carry out this reformulation also for the iteration matrix T̃AS,θ

as it is its spectral radius that asymptotically governs the convergence. However, since the spectral
11In many areas of interest it is often more suitable to bound the norm of the iteration matrix (and hence of the

error) over two or more iterations due to the nature of the underlying PDE analysis, see, e.g., [23, 26]. Further
research in this direction might be useful here as well.
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radius is not sub-additive or even stable with respect to perturbations, this wouldn’t be directly
useful for quantifying the slow-down of the Schwarz method convergence, unless we consider a more
specific situation. An extreme example is the case when the rounding is in nature only scalar
(highlighting the “nicest” case included in the above setting). That is, there exist a scalar α such
that Ai = αAi where Ãi = Ai, i.e., the subdomain matrices are scalar multiples of a matrix that can
be stored “exactly”12 in the considered precision uℓ. Then

Fi = (α̃− α)Ai, (38)

and denoting τ := |(α̃− α)/α| ∈ (0, 1) we get

Ei = − τ

1 + τ
I, (39)

and hence
T̃AS,θ = TAS,θ +

τ

1 + τ
M−1

AS,θA = I − 1

1 + τ
M−1

AS,θA.

In words, the inexactness of the local solves can be interpreted as an (additional) damping for the
additive Schwarz method. This factor can be conveniently included into the damping factor θ,
i.e., the damping factor θ can be chosen with this in mind, e.g., in our case taking θ = 1/2 still
guarantees convergence convergence. Notice though that τ corresponds to the relative rounding
error for α in the precision uℓ and hence 1/(1 + τ) tends to 1 as uℓ decreases.

Multiplicative Schwarz methods For the multiplicative Schwarz method we start by writing
the error matrix for the iteration matrix T̃MS, i.e., we write

T̃MS = TMS − EMS.

We choose to introduce the sign in this way because then we have

TMS = I −M−1
MSA and T̃MS = I − M̃−1

MSA,

and hence we get a consistent notation with (35), i.e.,

M̃−1
MSA = M−1

MSA+ EMS.

Considering the two-subdomains setting, i.e., p = 2, we get

EMS =


=:G1︷ ︸︸ ︷

−
(
I −RT

2 A
−1
2 R2A

)
RT

1 E1A−1
1 R1A

=:G2︷ ︸︸ ︷
−RT

2 E2A−1
2 R2A

(
I −RT

1 A
−1
1 R1A

)
+RT

2 E2A−1
2 R2AR

T
1 E1A−1

1 R1A︸ ︷︷ ︸
=:G3

,

and notice that the situation becomes more complicated than for the additive methods as the
matrices Ei now interact with the other subdomain solves. This is a consequence of the sequential

12Here “exactly” means to the same precision we store the solution. Also, notice that verifying (12) becomes trivial.
Notice that such problems arise, e.g., when discretizing “nice” Poisson-like problems with finite differences so that
α = 1/h2.
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nature of MS as opposed to (damped) AS and RAS and makes fully general and yet insightful
analysis not possible, precisely because of the unknown interaction. To visualize this, let us assume
that A has been (symmetrically) permuted so that

A =

 AI AI,o AI,II

Ao,I Ao Ao,II

AII,I AII,o AII

 with

A1 =

[
AI AI,o

Ao,I Ao

]
,K1 =

[
AI,II

Ao,II

]
,

K2 =

[
Ao,I

AII,I

]
, A2 =

[
Ao Ao,II

AII,o AII

]
.

A direct calculation then gives the formulas13

TMS =

0 0 −
(
A−1

1 K1

)
I,:

0 0
0 0

A−1
2 K2

(
A−1

1 K1

)
I,:

 , G1 =

 I 0 0

A−1
2 K2

0 0
0 0

 E1
0
0

0 0 0

I 0
0 I

A−1
1 K1

0 0 0

 ,

G2 =

0 0 0
0
0

E2

0 0
(
A−1

1 K1

)
I,:

0 0
0 0

−A−1
2 K2

(
A−1

1 K1

)
I,:

+

0 0
0 0

−A−1
1 K1

0 0 I

 ,

G3 =

0 0 0
0
0

E2

 0 0 0

A−1
2 K2

I 0
0 I

 E1
0
0

0 0 0

I 0
0 I

A−1
1 K1

0 0 0

 .

All hope of obtaining an analogous bound to (37) is lost here as any attempt to get a common
factor of ϵ ≥ ∥Ei∥ necessarily separates the subdomain matrices A−1

1 K1 and A−1
2 K2 in both G1 and

G3. Hence, any such general bound breaks the “continuity” of one MS iteration. However, looking
at G2 we see the structure of TMS appearing, with an additional term. It is useful to notice that the
same structure can be retained also for G1 and G3, provided we have additional knowledge about
the interaction of the the subdomain matrices A−1

i Ki and the matrices Ei. For example, considering
the simplest rounding setting as in (38)–(39) a straight-forward calculation gives us

G1 =
τ

1 + τ

TMS +

 I 0 0

−A−1
2 K2

0 0
0 0

 , G2 =
τ

1 + τ

TMS +

0 0
0 0

−A−1
1 K1

0 0 I

 ,

G3 =

(
τ

1 + τ

)2
TMS +

 0

A−1
2 K2

0
I
0

A−1
1 K1

0

 ,

and we see that an adapted version of (37) can be established in this particular case, i.e.,

∥EMS∥ ≤ τ

1 + τ

(
2(∥M−1

MSA∥+ 1) + ∥A−1
1 K1∥+ ∥A−1

2 K2∥
)

+

(
τ

1 + τ

)2 (
∥M−1

MSA∥+ ∥A−1
1 K1∥+ ∥A−1

2 K2∥+ 2
)
.

13Many of the following calculations are similar to the ones presented in [26, Section 3.2] for the modified restricted
Schwarz method.
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Accelerated Schwarz methods Next, we analyze the methods as preconditioners, using the
Schwarz methods as preconditioners for GMRES. First, we note that the GMRES convergence in
the above examples was almost linear (as opposed to (strongly) superlinear) and this was true also
when we used dAS or RAS instead of MS and in all of our experiments. A recent result in [5, Theorem
1.1 and Corollary 1.2] shows that for a linear GMRES convergence a perturbation of the system
matrix that is sufficiently small in norm slows the linear convergence only negligibly. Adapted to
our case, let us assume that the GMRES preconditioned with a standard Schwarz method converged
linearly with the convergence factor ρGMRES

⋆ . Then, running the GMRES preconditioned with a
multiprecision Schwarz method and obtaining the residual vectors r1, r2, . . . , we obtain the following
bound

∥rk∥
∥r0∥

≤
(
ρGMRES
⋆ +

1√
k
(1 + ρGMRES

⋆ )∥A−1M⋆∥∥E⋆∥F
)k

·

Observe that for any of the Schwarz methods this bound uses the inverse of the norm of the
preconditioned system, which is of course one of the factors of the condition number of the precon-
ditioned system. For the symmetric case, the condition number is a historically classical quantity
used to bound the convergence behavior of Krylov subspace methods. For the nonsymmetric case,
the connection between the condition number and the convergence is in general not present. For
MS the bound also includes additional terms.

Alternatively, we can use the pseudospectra-based bound. As the pseudospectrum of a matrix is
stable with respect to perturbations (as oppose to the the spectrum; see [49, The second definition
of pseudospectra, p. 14]), these are often useful in situation like ours, i.e., when trying to analyze
the effect of a (small) perturbation to the system matrix on the convergence behavior of GMRES,
see [45]. First, we recall that the δ-pseudospectrum of a matrix X, denoted by σδ(X), is defined as

σδ(X) =

{
z ∈ C | ∥(zI−X)−1∥ >

1

δ

}
= {z ∈ σ(X + E) for some E with ∥E∥ < δ} ,

for any δ > 0 and, clearly, for δ = 0 we recover the spectrum, i.e., σ0(X) = σ(X). Moreover, for any
δ > 0, σδ(X) forms a union of Jordan curves enclosing σ(X). Assuming we are solving a problem
Xv = b, using the δ-pseudospectrum, we get the standard ideal GMRES bound

∥rk∥
∥r0∥

≤ Lδ

2πδ
min

deg(φ)≤k
φ(0)=1

max
z∈σδ(X)

|φ(z)|, (40)

where Lδ denotes the arc length of the boundary of σδ(X) and φ(z) is a polynomial of the degree up
to k and normalized at the origin; for more details on pseudospectra see [49] and references therein
and for their use in the context of Krylov subspace methods (and GMRES in particular) see [34,
Sections 4.9 and 5.7.3] but also [16, Section 2.3] and the work cited there. We also note that (40)
is in fact a family of bounds based on δ, rather than a single bound. The common wisdom is that
larger values of δ tend to be more descriptive at the initial convergence phase (up to a certain δ0 for
which the bound stops being useful at all) while smaller values of δ give a more accurate prediction
for later stages of the GMRES convergence, see [16, Section 2.3].

Importantly, in [45, Section 2.2] the authors give two results relevant to our situation, which we
summarize below.
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Proposition 1 ([45, Theorems 2.1 and 2.3]). Adopting the above notation, let rk (ρk) be the
preconditioned GMRES residual with the full-precision (multiprecision, with the solve precision uℓ)
Schwarz method preconditioner. Assuming that ϵ := ∥E∗∥ < 1, then for any δ ∈ (0, ϵ) we have

∥ρk∥
∥b∥

≤
(
1 +

ϵ

δ − ϵ

)
Lδ

2πδ
min

deg(φ)≤k
φ(0)=1

max
z∈σδ(M

−1
⋆ A)

|φ(z)|. (41)

In words, the pseudospectral bound is stable with respect to small perturbations and so an accurate
pseudospectral bound on the full-precision system leads to only a slightly more pessimistic bound
– a delayed version of the full-precision one – for the multiprecision preconditioner.

We also note that in [45, Corollary 2.2], the authors show that for a fixed perturbation matrix
multiplied by a magnitude factor, i.e., for the case E⋆(dℓ) = ϵdℓZ⋆, we can expect that the (pre-
condtioned) residual norms will level-off from a certain precision onward. Moreover, this specific
threshold can be estimated using the pseudospectra of the original (full-precision preconditioner)
system. However, the question of calculating the pseudospectra of the original (full-precision) pre-
conditioned system as well as a reasonable choice of (several) value(s) of δ remains highly problem
dependent and will be a key factor in determining the accuracy of these bounds.

6 Conclusion and future work

We have proposed and analyzed multiprecision Schwarz methods that are specifically tailored for
problems where we can guarantee the methods convergence – problems where the system matrix is
a so-called M -matrix. Using specific rounding techniques, we were able to preserve the convergence
property and suggest several natural conditions for choosing a suitable precision depending on
the problem. We presented several numerical experiments on PDE model problems that support
our theoretical results and further illustrate aptness of our proposed conditions. As future work
we intend to consider generalizations for multiple subdomains and/or “interface conditions” in the
sense of [26].

An understanding of the interaction of the subdomain matrices A−1
i Ki and the matrices Ei for

all three classical Schwarz methods for a wider variety of problems would be certainly interesting
and we leave it open as a possibility for future research. Also, it has been shown that it is often
more suitable to bound the norm of the iteration matrix (and hence of the error) over two or
more iterations due to the nature of the underlying PDE analysis, see, e.g., [23, 26]. Exploiting
this to get a better grasp on the multiprecision Schwarz methods as stand-alone solvers would be
useful. Naturally, extending this analysis to preconditioning or rather understanding how to do that
would be also of clear interest. This would be likely overlapping with the so-called double-sweeping
preconditioners and their analysis.

References

[1] IEEE Standard for floating-point arithmetic. IEEE Std 754-2019 (Revision of IEEE 754-2008),
pages 1–84, 2019. doi: 10.1109/IEEESTD.2019.8766229.

[2] H. Anzt, J. Dongarra, G. Flegar, N. J. Higham, and E. S. Quintana-Ortí. Adaptive precision
in block-Jacobi preconditioning for iterative sparse linear system solvers. Concurrency and
Computation: Practice and Experience, 31:e4460, 2019.

29



[3] M. Benzi, A. Frommer, R. Nabben, and D. B. Szyld. Algebraic theory of multiplicative Schwarz
methods. Numerische Mathematik, 89:605–639, 2001.

[4] A. Berman and R. J. Plemmons. Nonnegative Matrices in the Mathematical Sciences. Academic
Press, New York, 1979. Reprinted by SIAM, Philadelphia, 1994.

[5] J. Blechta. Stability of linear GMRES convergence with respect to compact perturbations.
SIAM Journal on Matrix Analysis and Applications, 42:436–447, 2021.

[6] A. Buttari, N. J. Higham, T. Mary, and B. Vieublé. A modular framework for the backward
error analysis of GMRES. IMA Journal of Numerical Analysis; to appear, 2025.

[7] X.-C. Cai and M. Sarkis. A restricted additive Schwarz preconditioner for general sparse linear
systems. SIAM Journal on Scientific Computing, 21:792–797, 1999.

[8] X.-C. Cai, M. Dryja, and M. Sarkis. Restricted additive Schwarz preconditioners with harmonic
overlap for symmetric positive definite linear systems. SIAM Journal on Numerical Analysis,
41:1209–1231, 2003.

[9] E. Carson and X. Chen. Pychop: Emulating low-precision arithmetic in numerical methods
and neural networks, 2025. URL https://arxiv.org/abs/2504.07835.

[10] E. Carson and N. J. Higham. Accelerating the solution of linear systems by iterative refinement
in three precisions. SIAM Journal on Scientific Computing, 40:A817–A847, 2018.

[11] F. Cuvelier, M. J. Gander, and L. Halpern. Fundamental coarse space components for Schwarz
methods with crosspoints. In S. C. Brenner, E. T. S. Chung, A. Klawonn, F. Kwok, J. Xu, and
J. Zou, editors, Domain Decomposition Methods in Science and Engineering XXVI, volume 145
of Lecture notes in Computer Science and Engineering, Cham, Switzerland, 2023. Springer.

[12] V. Dolean, M. J. Gander, and L. Gerardo-Giorda. Optimized Schwarz methods for Maxwell’s
equations. SIAM Journal on Scientific Computing, 31:2193–2213, 2009.

[13] V. Dolean, M. J. Gander, S. Lanteri, J.-F. Lee, and Z. Peng. Effective transmission conditions
for domain decomposition methods applied to the time-harmonic curl–curl Maxwell’s equations.
Journal of Ccomputational Physics, 280:232–247, 2015.

[14] Victorita Dolean, Pierre Jolivet, and Frédéric Nataf. An Introduction to Domain Decomposition
Methods: Algorithms, Theory, and Parallel Implementation. SIAM, Philadelphia, 2015.

[15] E. Efstathiou and M. J. Gander. Why restricted additive Schwarz converges faster than additive
Schwarz. BIT Numerical Mathematics, 43:945–959, 2003.

[16] M. Embree. How descriptive are GMRES convergence bounds?, 2023. arXiv preprint:
2209.01231.

[17] A. Frommer and D. B. Szyld. Weighted max norms, splittings, and overlapping additive
Schwarz iterations. Numerische Mathematik, 83:259–278, 1999.

[18] A. Frommer and D. B. Szyld. An algebraic convergence theory for restricted additive Schwarz
methods using weighted max norms. SIAM Journal on Numerical Analysis, 39:463–479, 2001.

30

https://arxiv.org/abs/2504.07835


[19] A. Frommer and D. B. Szyld. On the convergence of randomized and greedy relaxation schemes
for solving nonsingular linear systems of equations. Numerical Algorithms, 92:639–664, 2023.

[20] M. J. Gander. Optimized Schwarz methods. SIAM Journal on Numerical Analysis, 44:699–731,
2006.

[21] M. J. Gander. Schwarz methods over the course of time. Electronical Transactions on Numerical
Analysis, 31:228–255, 2008.

[22] M. J. Gander and L. Halpern. Piece-wise constant, linear and oscillatory: a historical intro-
duction to spectral coarse spaces with focus on Schwarz methods. In Z. Dostál, T. Kozubek,
A. Klawonn, L. Ulrich, L. F. Pavarino, J. Šístek, and O. B. Widlund, editors, Domain Decom-
position Methods in Science and Engineering XXVII, volume 149 of Lecture notes in Computer
Science and Engineering, Cham, Switzerland, 2024. Springer.

[23] M. J. Gander and M. Outrata. On algebraic bounds for POSM and MRAS. In Z. Dostál,
T. Kozubek, A. Klawonn, L. Ulrich, L. F. Pavarino, J. Šístek, and O. B. Widlund, editors,
Domain Decomposition Methods in Science and Engineering XXVII, volume 149 of Lecture
notes in Computer Science and Engineering, Cham, Switzerland, 2024. Springer.

[24] M. J. Gander and H. Zhang. A class of iterative solvers for the Helmholtz equation: factoriza-
tions, sweeping preconditioners, source transfer, single layer potentials, polarized traces, and
optimized Schwarz methods. SIAM Review, 61:3–76, 2019.

[25] M. J. Gander and H. Zhang. Schwarz methods by domain truncation. Acta Numerica, 31:
1–134, 2022.

[26] M. J. Gander, S. Loisel, and D. B. Szyld. An optimal block iterative method and preconditioner
for banded matrices with applications to PDEs on irregular domains. SIAM Journal on Matrix
Analysis and Applications, 33:653–680, 2012.

[27] L. Giraud, A. Haidar, and L. T. Watson. Mixed-precision preconditioners in parallel domain
decomposition solvers. In U. Langer, M. Discacciati, D. Keyes, O. Widlund, and W. Zulehner,
editors, Domain Decomposition Methods in Science and Engineering XVII, volume 60 of Lecture
notes in Computer Science and Engineering, pages 357–364, Berlin, Heidelberg, 2008. Springer.

[28] C. Glusa, E. G. Boman, E. Chow, S. Rajamanickam, and D. B. Szyld. Scalable asynchronous
domain decomposition solvers. SIAM Journal on Scientific Computing, pages C384–C409,
2020.

[29] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia, PA, USA,
2002.

[30] N. J. Higham and T. Mary. Mixed precision algorithms in numerical linear algebra. Acta
Numerica, 31:347–414, 2022.

[31] N. J. Higham and S. Pranesh. Simulating low precision floating-point arithmetic. SIAM Journal
on Scientific Computing, 41:C585–C602, 2019.

31



[32] N. J. Higham, S. Pranesh, and M. Zounon. Squeezing a matrix into half precision, with an
application to solving linear systems. SIAM Journal on Scientific Computing, 41:A2536–A2551,
2019.

[33] R. A. Horn and C. R. Johnson. Topics in Matrix Analysis. Cambridge University Press,
Cambridge, Cambridge, 1994.

[34] J. Liesen and Z. Strakoš. Krylov Subspace Methods: Principles and Analysis. Oxford University
Press, Oxford, 2013.

[35] P. L. Lions. On the Schwarz alternating method. In R. Glowinski, G. H. Golub, G. A. Meurant,
and J. Périaux, editors, Domain Decomposition Methods for Partial Differential Equations,
pages 1–42. SIAM, 1988.

[36] F. Magoulès, D. B. Szyld, and C.Venet. Asynchronous optimized Schwarz methods with and
without overlap. Numerische Mathematik, 137:199–227, 2017.

[37] Multiprecision Computing Toolbox for MATLAB 5.2.5.15470. Advanpix LLC., Yokohama,
Japan.

[38] J. M. Ortega. Numerical Analysis: A Second Course. Classics in Applied Mathematics. SIAM,
Philadelpia, 1990.

[39] K. Ozaki, T. Ogita, S. Oishi, and S. Rump. Error-free transformations of matrix multiplication
by using fast routines of matrix multiplication and its applications. Numerical Algorithms, 59:
95–118, 2012.

[40] K. Ozaki, T. Ogita, S. Oishi, and S. M. Rump. Generalization of error-free transformation for
matrix multiplication and its application. Nonlinear Theory and Its Applications, 4:2–11, 2013.

[41] K. Ozaki, Y. Uchino, and T. Imamura. Ozaki scheme II: A GEMM-oriented emulation
of floating-point matrix multiplication using an integer modular technique. arXiv preprint
arXiv:2504.08009, 2025.

[42] Y. Saad. Iterative Methods for Sparse Linear Systems. Other Titles in Applied Mathematics.
SIAM, Philadelphia, Second edition, 2003. ISBN 978-0-89871-534-7.

[43] M. Sarkis and M. Dryja. Convergence bounds for one-dimensional ASH and RAS. In Z. Dostál,
T. Kozubek, A. Klawonn, L. Ulrich, L. F. Pavarino, J. Šístek, and O. B. Widlund, editors,
Domain Decomposition Methods in Science and Engineering XXVII, Lecture notes in Computer
Science and Engineering. Springer Berlin, Heidelberg, 2023.

[44] J. Schneck, M. Weiser, and F. Wende. Impact of mixed precision and storage layout on additive
Schwarz smoothers. Numerical Linear Algebra with Applications, 28:e2366, 2021.

[45] J. A. Sifuentes, M. Embree, and R. B. Morgan. GMRES convergence for perturbed coefficient
matrices, with application to approximate deflation preconditioning. SIAM Journal on Matrix
Analysis and Applications, 34:1066–1088, 2013.

32



[46] Barry F. Smith, Petter E. Bjørstad, and William D. Gropp. Domain Decomposition: Parallel
Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press,
Cambridge, New York, Melbourne, 1996.

[47] N. Tian, S. Huang, and X. Xu. Mixed precision block-Jacobi preconditioner: algorithms, per-
formance evaluation and feature analysis. CCF Transactions on High Performance Computing,
7:114–128, 2025.

[48] Andrea Toselli and Olof Widlund. Domain Decomposition Methods - Algorithms and Theory,
volume 34 of Series in Computational Mathematics. Springer, Berlin, Heidelberg, New York,
2005.

[49] L. N. Trefethen and M. Embree. Spectra and Pseudospectra: The Behaviour of Non-Normal
Matrices and Operators. Princeton University Press, Princeton, New Jersey, 2005.

[50] O. Widlund and M. Dryja. An additive variant of the Schwarz alternating method for the case
of many subregions. Technical Report 339, Ultracomputer Note 131, Department of Computer
Science, Courant Institute, New York University, 1987.

33


	Introduction
	Algebraic Schwarz methods
	Multiprecision computations
	Algebraic analysis of multiprecision Schwarz methods
	The general case
	The symmetric case

	Comparison of standard and multiprecision Schwarz methods
	Conclusion and future work

