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On recent advances of spectral analysis for systems arising from
fully-implicit RK methods

Michal Outrata1,∗

1 Sokolovská 83, Praha 8, 186 75, Czechia

This work deals with two groups of spectral analysis results for matrices arising in fully implicit Runge-Kutta methods used
for linear time-dependent partial differential equations. These were applied for different formulations of the same problem
and used different tools to arrive at results that do not immediately coincide. We show the equivalence of the results as well
as the equivalence of the approaches, unifying the two directions.
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1 Introduction

In recent years we have seen a renewed interest in using fully implicit Runge-Kutta (IRK) methods as numerical integrators
for (linear) time-dependent partial differential equations (PDEs), see [1–7], among others and also [8, 9] for a more complete
overview of Runge-Kutta methods in the context of numerical solvers for ordinary differential equations (ODEs). We will
consider a time-dependent PDE in the form

∂

∂t
u = Lu+ f in Ω× (0, T ),

Bu(x, t) = g(x, t) on ∂Ω× (0, T ), u(x, 0) = u(0)(x) in Ω,
(1)

on a given connected, bounded domain Ω ⊂ Rd and (0, T ) ⊂ R for some given data f, g and u(0). Moreover, we will assume
that the spatial operator L is bounded, coercive and self-adjoint. We note that these properties can be relaxed to other relevant
cases, see [5, 7]. We first discretize in space using, e.g., a finite elements (FE) scheme, obtaining a system of n ODEs

∂

∂t
Mu(t) = Ku(t) + b(ST )(t), with u(0) = u(0),

where M,K ∈ Rn×n are the mass and stiffness matrices (corresponding to the chosen FE scheme and the operator L), the
vector function b(ST )(t) aggregates the contributions of both f(t) and g(t) and the vector u(0) corresponds to the initial
condition u(0)(x). Any IRK method is then given by the number of stages s ∈ N and its Butcher table, succinctly written as

c A
bT , A ∈ Rs×s, and b, c ∈ Rs.

For a given timestep τ , the IRK method progresses the solution forward in time at timepoints tm := τm using the approxima-
tion u(tm) ≈ u(m) with

u(m) := u(m−1) + τ

s∑
i=1

bik
(m)
i ,

where the so-called stage-functions k(m)
i satisfy

Mk
(m)
i = b(ST )(tm−1 + ciτ) +Kk

(m−1)
i + τ

s∑
j=1

aijKk
(m)
j , i = 1, . . . , s. (2)

For the so-called fully IRK methods, the Butcher matrix A = [aij ] is dense, i.e., aij ̸= 0 for all i, j = 1, . . . , s, so that (2)
becomes a rather large system. We start by rewriting (2) using a Kronecker product notation as
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Fig. 1: The spectra of the preconditioned system P−1A for the preconditioner P given in (7) below, using the RadauIIA IRK method. The
spatial operator is the Laplacian on an irregular domain Ω with various boundary conditions (Dirichlet, Neumann and Robin), discretized
using conforming P1 FEM, see [7, Section 4, Example 2] for detailed description.

(I ⊗M + τA⊗K)k(m) = (I ⊗M)k(m−1) +
[
b(ST )(tm−1 + c1τ)

T , . . . ,b(ST )(tm−1 + csτ)
T
]T

, (3)

where k(m−1) =
[
(k

(m−1)
1 )T , · · · , (k(m−1)

s )T
]T

. Next, we transform (3) by factoring out A⊗ I on the left-hand side to the
left and multiplying the equation with its inverse, obtaining(

A−1 ⊗M + τI ⊗K
)︸ ︷︷ ︸

=:A

k(m) = b
(m−1)
IRK , (4)

so that b(m−1)
IRK is defined as the right-hand side vector in (3) multiplied by A−1⊗I from the left. To the best of our knowledge

this was first proposed by Butcher in [10] and later became the standard, see [1, 3–5, 11–15]; the intuition on why this is
useful is summarized in, e.g., [13, Section 4] or [15, Section 4.1]. The go-to solver for (4) has been the GMRES method
(see [16, Sections 2.2, 5.7 and 5.10]) with a suitable preconditioner and in [17], the authors considered a generic class of
block-preconditioners (there formulated for (3)) given by

P = Ã⊗M + τI ⊗K. (5)

The authors proposed some convenient choice of Ã, which helped to stimulate the development of related preconditioners,
notably the works [1, 11, 12, 14]. As the GMRES convergence is in practice often linked with the spectral properties of the
(preconditioned) system matrix (see [16, Sections 2.2, 5.7 and 5.10], also for the limits of this analysis), the authors presented
also plots showing “favorable properties”1 of the spectrum. For illustration, we include an example in Figure 1.

As far as we are aware, there have been two independent series of works that aimed at analyzing preconditioners of the
type (5) – namely their spectral properties – the first coming from the group originally led by the late Owe Axelsson ( [5, 13])
and the second from the group of Martin J. Gander ( [7, 19]). The purpose of this work is to analyze their overlap and show
their equivalence.

Both of these works are based on the spectral properties of the matrix pencil τK − µM (we replace the standard symbol
λ for the generalized eigenvalue by µ), i.e., on the eigendecomposition of the matrix τM−1K. As the stiffness and mass
matrices come from a discretization of a coercive, self-adjoint, bounded operator L, we assume that the pencil τK − µM is

1 In this context we would like to recall the classical result from [18] that states that any GMRES convergence can be observed for a system with a matrix
with a given spectrum, i.e., spectrum on its own is not sufficient to say anything about GMRES behavior. In practice, however, this is rarely observed and
many GMRES users use the folklore of “better-clustered spectrum suggests faster convergence”, without further, case-specific justification. More details for
this particular setting can be found in [7].
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symmetric and positive-definite so that there exist an M -orthogonal eigenbasis q1, . . . ,qn of τK, i.e.,

M−1K = Q

µ1

. . .
µn

QT =: QDQT , with Q = [q1, . . . ,qn], D = diag(µ1, . . . , µn), (6)

where 0 < µ1 ≤ . . . ≤ µn are the generalized eigenvalues of the pencil τK − µM , i.e., of the matrix τM−1K, see [20,
Sections 2.3 and 5] for more details and further references.

2 Formulas for the eigenproperties of the preconditioned system

2.1 Polynomial approach

This direction was initiated by the following observation of prof. Axelsson

Taking the RadauIIA Butcher matrix A for any s = 2, . . . , 10, the lower-triangular part of A−1 is
dominating the rest of the matrix (in terms of magnitude of the entries). Similarly, the LD factor
of the LDU factorization of A−1 is dominating the U factor (in both the spectral and the Frobenius
norm).

Heuristically, this suggests that these carry the majority of the information of A−1 for the RadauIIA method and as such are
reasonable choices for Ã for the preconditioner construction. This has been numerically observed also in [1, 11], only for
A itself, rather than A−1. Writing the LDU factorization A−1 = L̃D̃U we set L := L̃D̃ = [lij ] so that U is a unit upper-
triangular matrix, i.e., we have U = I + Û for some strictly upper-triangular matrix Û = [ûij ]. Taking Ã = L in (5), we
obtain

P−1A = (L⊗M + τI ⊗K)
−1

(
L⊗M + I ⊗ τK + (LÛ)⊗M

)
= I +

(
I + τL−1 ⊗M−1K

)−1
(
Û ⊗ I

)
=: I +W−1

1 W2,
(7)

see [13, equation (14)] or [5, Section 4] for further details. In [13], the authors consider the RadauIIA IRK and show that for
s = 2 the eigenvalues of P−1A lie inside the disc centered at 1 with the diameter ∥Û∥ < 1 and conjecture this localization
for general s. In [5, Section 4], the authors improve the localization of the eigenvalues of P−1A for the RadauIIA IRK, using
the matrix pencil W2 − λW1 (notice that W1,W2 are neither symmetric nor positive-definite). Namely, having a generalized
eigenpair (λ,v) of the pencil W2 − λW1 we have

P−1Av = (1 + λ)v ⇐⇒ W2v = λW1v. (8)

The authors then work with W2v = λW1v as with an equation for (λ,v), i.e., the aim is to solve
0 û1,2I . . . û1,sI

. . . . . .
...

. . . ûs−1,sI
0



v1

...

...
vs

 = λ



v1

...

...
vs

+


ℓ11 · τM−1K

...
. . .

...
. . .

ℓs1 · τM−1K . . . . . . ℓss · τM−1K



v1

...

...
vs


 (9)

for (λ,v). In [5, Section 4.3], the authors first observe n “trivial” solutions corresponding to λ = 0. To resolve the remaining
(s − 1)n eigenpairs, the authors proceed with a symbolic block backward substitution. This is presented for s = 2, 3 in
Sections 4.1 and 4.2 and by analogy the authors argue that such a routine can be carried out for any s. As there is little space
devoted to this argument in [5, Section 4.3], we derive it here ourselves, adhering to the techniques used in [5, Section 4].

Looking at the i-th (1 ≤ i ≤ s) block-row in (9), we can rearrange it as

λ(I + ℓii · τM−1K)vi =

s∑
j=i+1

ûi,jvj −
i−1∑
j=1

λℓi,j · τM−1Kvj , (10)

and notice that for i = s, λ factors out from both sides so that vs can be expressed only in terms of v1, . . . ,vs−1, i.e.,
independent of λ. This corresponds to the first step of the mentioned symbolic backward substitution. We proceed with the
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substitution for i = s − 1, . . . , 1. When dealing with the i-th block-row we assume to have expressions for vs, . . . ,vi+1 in
terms of v1, . . . ,vi and we insert these into (10), obtaining

[
λ(I + ℓii · τM−1K)−H(i)

]
vi =

i−1∑
j=1

(
G

(i)
j − λℓi,j · τM−1K

)
vj , (11)

for some appropriate n-by-n matrices H(i), G
(i)
j based on (10). For example,

H(s−1) = −ûs−1,s(I + ℓss · τM−1K)−1ℓs,s−1 · τM−1K,

G
(s−1)
j = −ûs−1,s(I + ℓss · τM−1K)−1ℓs,j · τM−1K.

(12)

From (11) we obtain an expression for vi in terms of vi−1, . . . ,v1 and after s steps arrive at[
λ(I + ℓ11 · τM−1K)−H(1)

]
︸ ︷︷ ︸

=: F̃τM−1K(λ)

v1 = 0. (13)

This process “sandwiches” the inversion of the matrices λ(I + ℓii · τM−1K) − H(i) and the multiplication with matrices
G

(i)
j − λℓi,j · τM−1K. In other words, F̃τM−1K(λ) is built from the building blocks of matrices τM−1K and I by repeated

applications of linear combination and inversion. This is, at least in our understanding, the key observation behind the analysis
in [5] and has several relevant implications.

First, in this sense F̃τM−1K(λ) is a rational function of τM−1K and also a rational function of λ. Second, all matrix
products in the definition of F̃τM−1K(λ) commute, for example we have

H(s−2) = ûs−2,sG
(s−1)
s−2 −

(
ûs−2,s−1 + ûs−2,s(I + ℓss · τM−1K)−1ℓs,s−1 · τM−1K

)
·

·
[
λ(I + ℓs−1,s−1 · τM−1K)−H(s−1)

]−1 (
G

(s−1)
s−2 − λℓs−1,s−2 · τM−1K

)
= ûs−2,sG

(s−1)
s−2 −

[
λ(I + ℓs−1,s−1 · τM−1K)−H(s−1)

]−1

·

·
(
ûs−2,s−1 + ûs−2,s(I + ℓss · τM−1K)−1ℓs,s−1 · τM−1K

) (
G

(s−1)
s−2 − λℓs−1,s−2 · τM−1K

)
.

(14)

In particular, the inversed matrices “sandwiched inside” H(1) can freely “travel to the left” within the sandwiches, i.e., we
can move all the inversed matrices in the matrix products inside F̃τM−1K(λ) (i.e., inside H(1)) “to the left”, similarly to (14).
After this rearrangement is finished, we can multiply (also from the left) with those matrices, transforming (13) so as to get
rid of all inversions. For example, in (14) we would first multiply by λ(I + ℓs−1,s−1 · τM−1K) − H(s−1) and then with
I+ℓss ·τM−1K (which is also present inside H(s−1)). This corresponds to expanding back the backward substitution process
and in this process we transform (13) to a new equation, let us denote it

FτM−1K(λ)v1 = 0. (15)

Already for s = 3 (with H(1) = H(s−2) given in (14)) the calculation becomes somewhat tedious and it is a downright un-
pleasant chore for larger number of stages. However, it allows us to focus on the quantity of interest – the matrix FτM−1K(λ).

By construction, each of the inversed matrices consisted of linear combination of (a) terms linear in λ and (b) other inversed
matrices. As we did s-step backward substitution, the above process of transforming F̃τM−1K(λ) into FτM−1K(λ) introduces
at most s multiplications – the first s − 1 of them will introduce a linear factor in λ, while the last (corresponding to the
bottom-most block-row of (9)) is independent of λ. In other words, FτM−1K(λ) is a polynomial function in λ of degree s−1.
In fact, the construction showcases that FτM−1K(λ) is the numerator of the rational function F̃τM−1K(λ) with respect to λ.
Also by construction,

Ker (FτM−1K(λ)) = Ker
(
F̃τM−1K(λ)

)
, (16)

since we always multiplied by non-singular matrices with trivial kernels. Linking this back to the preconditioned system, we
observe that (1+λ,v) is an eigenpair of the preconditioned system P−1A if and only if v1 ∈ Ker (FτM−1K(λ)). This shows
there has to be a very close link between the matrix polynomial FτM−1K(λ) and the characteristic polynomial of P−1A (after
the simple change of variables λ = 1 + λ, see (8)).
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A third consequence of this special structure of F̃τM−1K(λ) (which extends to FτM−1K(λ)) is that F̃τM−1K(λ) must
diagonalize in the eigenbasis Q of τM−1K, i.e., we can rewrite (15) as

QT F̃τM−1K(λ)QQTv1 ≡

F̃µ1
(λ)

. . .
F̃µn

(λ)

QTv1 = 0,

QTFτM−1K(λ)QQTv1 ≡

Fµ1(λ)
. . .

Fµn
(λ)

QTv1 = 0,

where F̃µk
(λ) (or Fµk

(λ)) are now scalar rational (or polynomial) functions of λ with the precise structure of F̃τM−1K(λ)

(or FτM−1K(λ)), only replacing the matrices τM−1K and I by µk and 1. Hence, the coefficients of F̃µk
(λ) (or Fµk

(λ))
are themselves rational functions in µk. Crucially, this showcases the connection between the matrix FτM−1K(λ) and the
characteristic polynomial of P−1A. By the same argument as in (16) we get

det (FτM−1K(λ)) = ατM−1Kdet
(
F̃τM−1K(λ)

)
,

for some scaling coefficient ατM−1K ̸= 0 and thereby we see that if det (FτM−1K(λ)) = 0, then λ is one of the s(n − 1)
generalized eigenvalues of the pencil W2 − λW1 we are looking for. Writing

p̂char(λ) := det (FτM−1K(λ)) = det

Fµ1
(λ)

. . .
Fµn(λ)

 =

n∏
k=1

Fµk
(λ), (17)

it follows that pchar(λ) := λnp̂char(λ) is (up to a rescaling) the characteristic polynomial of the pencil W2 − λW1, and
therefore pchar(λ − 1) is (up to a rescaling) the characteristic polynomial of the preconditioned system P−1A. Due to the
structure of p̂char(λ) in (17) it becomes natural to index the eigenvalues of P−1A (i.e., the zeros of pchar) by the eigenvalues
µk of τM−1K.

Remark 2.1 While not stated this way, the above was clearly grasped in [5, Sections 4 and 5]. There, the above derivation
is essentailly skipped by taking v1 = q1. This somewhat simplifies the calculation compared to (11-15) but not to an agreeable
level. This is also illustrated by the fact that the numerical experiments in [5] are carried out only for s = 2, 3. Comparing
with [5, Sections 4.3 and Theorem 5.1], the above is, in our eyes, slightly more constructive way to arrive at the same result.
We also believe that it highlights more clearly the key mechanic of the derivation.

However, since the analysis in [5, Sections 4 and 5] relies on the construction of pchar, the above seems not fully satisfactory
– as mentioned above, it is a laborious task to obtain the symbolic formulas beyond s = 2, 3 and this practical aspect was not
addressed; authors simply state that this symbolic approach must work for any s.

A slight simplification can be achieved as follows. We return to (9) and pass blockwise into the eigenbasis Q directly there,
obtaining (

Û ⊗ In

)
w = λ

(
Is ⊗ In + L−1 ⊗D

)
w, (18)

with w = (I ⊗QT )v. This transposes the block backward substitution of (9) into n independent scalar ones,

Ûsµk
= λ

(
Is + µkL

−1
)
sµk

, (19)

again, parametrized by µk, k = 1, . . . , n. By construction, the characteristic polynomial of the matrix pencil Û−λ
(
Is + µkL

−1
)

is (up to a rescaling) identical to Fµk
(λ), i.e., we can calculate the coefficients of Fµk

(λ) using a scalar version of the sym-
bolic backward substitution – arriving at formulas from [5, Sections 4.2] for the case s = 3 without the blockwise backward
substitution in (9).

Obtaining the spectrum of P−1A (or an estimate of it) then reduces to calculating (or estimating) µ1, . . . , µn, then evalu-
ating the symbolic formulas to get the coefficients c1, . . . , cn ∈ Rs of Fµ1

(λ), . . . , Fµn
(λ) and calculating the roots of these

polynomials using a standard numerical software, e.g., numpy.roots(ck).
A direct observation is that, from the numerical perspective, finding the roots of a higher-degree polynomial written in the

monomial basis can be a poorly-conditioned problem with respect to the polynomial coefficients. This is a well-known
problem and algorithms for approximation of the roots of a polynomial given by a coefficient vector c ∈ Rd, such as
numpy.roots(), circumvent the issue by calculating eigenvalues of the so-called companion matrix Cc ∈ Rd×d. In particular,
the costs of finding the roots of a polynomial with coefficients c ∈ Rd are governed by the costs of solving a d-dimensional
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eigenvalue problem. In our setting, this means that the costs of finding the eigenvalues λ
(k)
1 , . . . , λ

(k)
s−1, k = 1, . . . , n of the

matrix pencil W2 −λW1 (or their estimates) after all the symbolic work has been done still amounts to solving n independent
eigenvalue problems of size (s−1)-by-(s−1). Taking a step back, we notice that we have already expressed λ

(k)
1 , . . . , λ

(k)
s−1 as

the eigenvalues of n independent s-by-s generalized eigenvalue problems – in the equation (19). Moreover, their construction
is direct, given the values (or approximations of) µ1, . . . , µn – no symbolic calculations are needed.

In other words, what we gain by the explicit construction of Fµ1
(λ), . . . , Fµn

(λ) compared to numerically solving (19) is
the reduction of the size of each of the n independent eigenvalue problems by one and the fact that we can use eigenvalue
solvers tailored to companion matrices rather than generic generalized eigenvalue solver. Given that these problems are very
small, we believe it to be more efficient and numerically stable, to avoid the explicit construction of Fµ1(λ), . . . , Fµn(λ) and
instead treat these only implicitly by using an eigenvalue solver for (19). Crucially, this is not present in [5] and it is the
keystone between the analysis above and the one presented in [7] as we shall see next.

2.2 Matrix approach

This direction was initiated by prof. Gander based on the plenary talk of prof. Howle at the PRECOND conference in 2019 in
Minneapolis (later, some of the results appeared in [1]). Her group has been interested in preconditioners for the systems (2)
for problems like (1) and she presented some strong numerical results for the block preconditioners of the type (5) (and since
has expanded the focus also to hyperbolic problems, see [11, 21]). As our analysis was framed mainly by the setup in [1], we
dealt with the preconditioned system(

I ⊗M + τÃ⊗K
)−1

(I ⊗M + τA⊗K)k(m+1) = b̃(m),

rather than (4) with the preconditioner (5) – here we will write the results in the “notation” of (4) and (5).
Similarly to [5, 13], we also first studied the case s = 2 in detail in [19] and only later generalized the results for arbitrary

s in [7], see also [22].
The analysis is built using the same observation that allowed us to pass from (18) to (19), which is based on the Kronecker

product properties. In particular, we can write

P−1A = (L⊗M + τI ⊗K)
−1 (

A−1 ⊗M + I ⊗ τK
)

= (I ⊗QT )−1 (L⊗ I + I ⊗D)
−1 (

A−1 ⊗ I + I ⊗D
)︸ ︷︷ ︸

=: XτM−1K

(I ⊗QT ).

By construction, the matrix XτM−1K is an ns-by-ns block matrix, each block X
(ij)
τM−1K ∈ Rn×n being a diagonal matrix2,

X
(ij)
τM−1K = diag(x

(ij)
1 , . . . , x

(ij)
n ). This is a very special sparsity structure and can be transformed into one we are perhaps

more used to – we can permute XτM−1K into a block-diagonal matrix. That is, there exists a permutation matrix Π such that

ΠTXτM−1KΠ ≡ ΠT


X

(11)
τM−1K . . . X

(1s)
τM−1K

...
. . .

...
X

(s1)
τM−1K . . . X

(ss)
τM−1K

Π =

X1

. . .
Xn

 ,

where X1, . . . , Xn are given as

Xk =


x
(11)
k . . . x

(s1)
k

...
. . .

...
x
(s1)
k . . . x

(ss)
k

 = (L+ µk)
−1(A−1 + µk) ∈ Rs×s, (20)

for k = 1, . . . , n, see [7, Lemma 3.1]. Importantly, Xk contains precisely the terms in XτM−1K that depend on the k-th
eigenspace corresponding to µk and is independent of µ1, . . . , µk−1, µk+1, . . . , µn. Hence, we will use the notation Xµk

rather than Xk, similarly to Section 2.1. By construction, having an eigenpair (λ, s) of Xµk
we have that

P−1A(I ⊗QT )−1Π(ek ⊗ s) = (I ⊗QT )−1Π(ek ⊗Xµk
s) = λ(I ⊗QT )−1Π(ek ⊗ s), (21)

i.e., the eigenpairs of the preconditioned system are fully characterized by those of Xµk
∈ Rs×s.

2 We choose the subscript τM−1K by analogy to Section 2.1, as they play a similar role in the respective expositions.

Copyright line will be provided by the publisher



PAMM header will be provided by the publisher 7

Remark 2.2 We would like to highlight that the matrices Xµk
combined with (21) turn out to be practically useful also for

estimation of the standard GMRES bound

∥rℓ∥
∥r0∥

≤ κ(S) min
φ(0)=1

deg(φ)≤ℓ

max
1≤i≤sn

|φ(λi)|, (22)

where S is the matrix of eigenvectors of P−1A and κ(S) is its condition number. As we can see in [7, Section 4], the resulting
GMRES convergence estimates are very descriptive even for larger number of stages. Crucially, though, the original version of
the work contained a simple error in the last conclusion drawn from (21), namely in evaluation of κ(S). The corrected version
has been submitted since and is also present in the preprints (links are on the personal webpages of both of the authors).

2.3 Connecting the two

The first point of contact between the two groups happened at the SIAM LA meeting in Paris in 2024, where I have met
Ivo Dravins who was presenting the materials from [5]. This lead to several useful discussions. Among other things, these
discussions led me to write this text to clearly connect the two approaches for analyzing the spectrum of P−1A – in fact, we
will see next how to map one onto the other.

The key to seeing the two approaches as one is again the Kronecker product structure and arithmetic. Comparing (20)
with (19), we see two sets of n eigenvalue problems of the size s-by-s, parametrized by µk. A direct calculation gives

Xµk
= (L+ µk)

−1(A−1 + µk) = (L+ µk)
−1(L(I + Û) + µk)

= I + (L+ µk)
−1(LÛ)) = I + (I + L−1µk)

−1Û),
(23)

the analogue of the manipulations in (7), only carried out with the s-by-s blocks on the diagonal, after passing into the block
basis (I ⊗ QT )Π. Following this analogy one step further, we see that the generalized eigenvalue problems in (19) are
simply a redressing of the eigenvalue problems with Xµk

in (20). Relating this back to the objects featuring in [5, 7], for any
k = 1, . . . , n we have

det (λI −Xµk
) = det

(
(λ− 1)I − (I + L−1µk)

−1Û
)
.

Recalling that Fµk
(λ) is obtained by factoring out λ in the first step of the (block) backward substitution, we conclude that

(λ − 1)Fµk
(λ − 1) is the characteristic polynomial of Xµk

(up to a rescaling). In other words, the approach in [5] led to
assembling the characteristic polynomial of the matrices used in [7], both posed in the block eigenbasis I ⊗QT .

In both of the works, the authors recognized that this approach is fully general with respect to the chosen IRK method, i.e.,
with respect to A, although the results naturally do depend on this choice. Moreover, the authors also recognized, that their
respective formulations of the spectrum of P−1A reveal its additional structure – the eigenvalues come from a single object
– the matrix Xµk

(or the polynomial pchar) – parametrized by µk. Since in many cases of interest the eigenvalues µk sample
fairly densely some interval (µmin, µmax), each eigenvalue (zero) of Xµk

(pchar) becomes a continuous function of µk. In
particular, the eigenvalues of P−1A necessarily form branches – in fact s of them – where each branch tracks out one of these
“smooth functions” of µk.

Remark 2.3 We can observe this in Figure 1 – the complex conjugate branches are densely sampled even for a very low
mesh resolution (h ≈ 0.7). For s = 3 we see clearly two complex conjugate branches. There are also several real eigenvalues.
In fact N of them are exactly equal to 1 + 0i – a theoretical result established in both [5] and [7] – and these constitute the
third, branch (hence we indeed have s branches). The real eigenvalues other than 1 + 0i highlight that, from a certain µk

onwards, the matrices Xµk
have real spectrum. In particular, there exists a µ̂k for which Xµ̂k

has a single real eigenvalue λ̂k

with algebraic multiplicity equal to two (based on Figure 1 we have λ̂k ≈ 0.89 + 0i). In this way, Figure 1 nicely illustrates
that indeed the eigenvalues of P−1A are only continuous (and not, e.g., C1) functions of µk. Similar behavior is present in all
of the graphs in Figure 1 – we have s branches, one of them degenerating into the single point 1+ 0i and the others appearing
in complex conjugate pairs (if they are indeed complex); notably for s = 4, 6 there is an additional, purely real branch.

3 Conclusion and future work

We have demonstrated how to transpose the analysis of each of the two groups into the language of the other, spelling out
in detail how these seemingly different approaches map onto each other. However, in both [5, 7], the spectral results are
only a part of the story. In [5] these are used together with the block locally Toeplitz (BLT) theory to establish interesting
asymptotic results (which have been independently observed also in [22, Chapter 7]). In [7], the focus is on using the obtained
eigeninformation (or an estimate thereof) for estimating the GMRES behavior convergence of the preconditioned systems,
using the potential theory and the Schwarz-Christoffel (SC) mapping in particular. We believe that these directions could
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and should be explored in conjunction as well – the BLT theory can, in principle, provide estimates of the (fully complex)
spectrum of the spatial operator, which for is the crucial piece needed for further generalization of the SC mapping approach
for GMRES estimation for systems stemming from IRK applied to PDEs with more involved spatial operators. This is a work
in progress and which we find quite enticing.
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