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Abstract

We revisit the Hierarchical Poincaré–Steklov (HPS) method for the Poisson equa-
tion using standard Q1 finite elements, building on the original in [21]. While corner
degrees of freedom were implicitly handled in that work, subsequent spectral-element
implementations have typically avoided them. In Q1-FEM, however, corner coupling
cannot be factored out, and we show how the HPS merge procedure naturally ac-
commodates it when corners are enclosed by elements. This clarification bridges a
conceptual gap between algebraic Schur-complement methods and operator-based for-
mulations, providing a consistent path for the FEM community to adopt HPS to retain
the Poincaré–Steklov interpretation at both continuous and discrete levels.

1 Introduction

Hierarchical Poincaré–Steklov (HPS) solvers are a class of hierarchical direct solvers designed
for elliptic PDEs; the name was coined in [12, 22] but some of the ideas are in [4, 23, 15, 11].
Starting with many subdomains, the goal is to recursively merge local boundary operators –
typically Dirichlet-to-Neumann (DtN) or Impedance-to-Impedance (ItI) maps – constructing
a global one that we apply to the problem. The HPS approach achieves high accuracy
and near-optimal complexity, combining ideas present in hierarchical matrix computations
(H), domain decomposition (DD) and direct solvers, i.e., it is poised to be the keystone
connecting several communities, e.g., BDDC or FETI; in words of one of the authors after
reading [18]: “For the love of God, they need to start talking to each other!”. In our opinion
this communication has been limited also due to the strong spectral element methods (SEM)
background of the HPS community; the formulation, discretization and computation in HPS
are often entangled together, making it difficult to relate pros and cons of the “package”
to its parts. We want to provide a modular alternative, approachable for readers across
multiple communities and for the sake of space we focus on the corner points1, which are
routinely considered an obstacle in the HPS context [12, 22, 13, 1, 2, 20]. Many aspects of
what follows can be found somewhere in the literature, sometimes with limited references to
the other fields but, to the best of our knowledge, a modular HPS exposition is nowhere to
be found in the HPS literature.

As mentioned, the HPS community is using predominantly SEM on tensor product grids
– it offers high (possible) accuracy and lets us avoid the corner points, e.g., with the Gauss-
Legendre points. If the corner points appear, in SEM they usually come decoupled from

1We note that in the DD community we usually use the term cross points, e.g., [8, 6].
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the interior nodes or can be avoided altogether by modifying the spectral discretization, see,
e.g., [12, 13, 1, 2]. HPS using finite differences or finite volumes, [11, 5], also rely on avoiding
the corner-coupling issue that arises in, e.g., FEM. The rationale is both analytical but also
practical: the used Poincaré-Steklov (PS) operators need not be well-defined in the presence
of corners and the tensor-product basis naturally isolates corner DoFs [9, 7, 24, 17]. Hence,
for many new readers, the HPS methods are intrinsically connected with such discretization
schemes.

However, essentially the same problems have been studied also from the algebraic per-
spective, e.g., nested dissection, hierarchical semi-separable and hierarchical multifrontal
techniques, e.g., [10, 14, 26, 25], are purely algebraic: they operate directly on the discrete
system, exploiting observed numerical blockwise low-rankness for compression and factor-
ization. Although the foundational work on hierarchical matrices, see e.g., [3, 16], is built
on the continuous operators, to the best of our knowledge, it does not include PS operators,
nor incorporate static condensation or skeletonization. The recursive skeletonization can be
viewed within the multilevel DD or multigrid framework – in [19], HPS has been identified
with a specific multigrid V-cycle.

Our primary goal below is to separate the discretization method and the way in which
the method treats the corner points, thereby helping to build the modular view of HPS. For
that reason we choose the standard Poisson problem on a rectangle and use the Q1-FEM
discretization on a tensor product grid, where the basis functions firmly couple the corner
point DoFs with others. In the HPS community, this would be considered a major issue
as it prevents a straightforward definition of the local DtN. However, having discretized
we show this can be resolved with little extra effort. We are not aware of the HPS and
Q1-FEM coupling (or other simple low-order FEM) anywhere in the literature; this set-
up should also provide a simple entry point into HPS methods for broader audience and
FEM enthusiasts will notice that we do not rely on the Q1 elements in any way. We again
highlight that in different communities and in different context similar ideas already exists,
see, e.g. [18], where the authors consider mixed-order curl-conforming FEM discretization for
time-harmonic Maxwell equations in R3 – an involved setting in which HPS is not mentioned
but corner points and edge points are considered.

2 The HPS method with corners

As noted above, we consider the simplest model problem

∆u = f in Ω := (α, β)× (γ, δ) and u = g on ∂Ω, (1)

and start by outlining the structure of a general HPS method:

1. Partition – partition the domain Ω into subdomains.

2. Discretization & Assembly – formulate, discretize and assemble the subdomain solution
boundary operators for the subdomains.
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3. Merge – merge the neighboring solution boundary operators and store the result.

4. Recursion – recurse and continue merging until we reach the entire domain Ω.

5. Application – given data, apply the global solution boundary operator and calculate
the solution on the boundaries of the subdomains.

6. Reconstruction – reconstruct the solution in the subdomains from the boundaries.

As per the partition stage, we the standard, grid-like set-up

Ωe = [a(x1)
e , b(x1)

e ]× [a(x2)
e , b(x2)

e ] ⊂ Ω,

see Figure 1-right, forming a non-overlapping decomposition of Ω with corner points; other
decompositions can be treated identically [18, Figure 2].

2.1 The discretization & assembly stage

The analytical background. We are interested in constructing the subdomain solution
boundary operators – dealing with the Poisson problem, those are the subdomain DtNs. Let
ue denote the solution on the subdomain Ωe, i.e.,

−∆ue = f in Ωe, and ue = ge on ∂Ωe. (2)

We can split ue into the sum of the harmonic lift of the boundary data ge, denoted by u
(g)
e

and the particular solution of the interior load f , denoted by u
(f)
e , obtaining

−∆u
(g)
e = 0 in Ωe & u

(g)
e = ge on ∂Ωe and −∆u

(f)
e = f in Ωe & u

(f)
e = 0 on ∂Ωe.

Analogously, we also split the Neumann trace of the solution, denoted by ∂nue,

∂nue = ∂nu
(g)
e + ∂nu

(f)
e =: Λege + qe (3)

featuring homogeneous DtN Λe and the particular Neumann trace qe on Ωe.
Discretization. We first introduce grid nodes in Ωe in a tensor-product manner along

the x1 and x2 axis. On this grid we consider the Q1 finite element discretization of (2) and
index the local DoFs by integer pairs ιe = (i, j); see Figure 1 for the details. Applying
integration by parts to the continuous weak form of (2) gives∫

Ωe

∇ue · ∇ϕm dx =

∫
Ωe

f ϕm dx+

∫
∂Ωe

(∂nue)ϕm ds, m ∈ ιe

and then, after approximating ue in the Q1-FEM basis and reordering the DoFs, we get the
discretized system for the unknown coefficients ue[

Ae Be

Ce De

][
uint
e

u∂
e

]
=

[
f inte

f∂e

]
+

[
0

∂nue

]
, (4)
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Figure 1: Left: two neighbouring subdomains Ω1,Ω2 with the index sets of the grids. We
have ιI1 ≡ ιR1 and ιI2 ≡ ιL2 and also see the corner index sets ιC1 , ι

C
2 , although not separately

highlighted. Finally, we set ι∂e := ιLe ∪ ιRe ∪ ιTe ∪ ιBe ∪ ιCe so that ιe = ιinte ∪ ι∂e for any e.
Right: (incomplete) illustration of the nested dissection merge hierarchy ordering, see [21,
Appendix A].

where ∂nue is the Q1-FEM discretization of the Neumann trace of ∂nue at ι
int
e .

Assembly. Equation (4) shows that the negative residual along the interface is the finite
element representation of the approximate normal fluxes along the boundary. As these fluxes
are unknown, the equations in the second block-row give the formula,

∂nue = Ceu
int
e +Deu

∂
e − f∂e ,

which, after elimination of the interior DoFs, becomes

∂nue ≡ r∂e =
(
De − CeA

−1
e Be

)
u∂
e + CeA

−1
e f inte − f∂e =: Seu

∂
e + he. (5)

This relation mirrors the continuous decomposition (3): the Schur complement Se acts as the
discrete homogeneous DtN operator mapping boundary values u∂

e to their induced boundary
fluxes, while he represents the discrete flux produced by the interior load under homogeneous
Dirichlet conditions. The assembly stage of HPS methods consists of computing (or approx-
imating) the matrices Se so that the right-hand side of (5) can be evaluated rapidly in the
application stage.

2.2 The merge stage

Having two subdomains, say Ω1,Ω2, with finished assembly stage that share an interface,
we want to assemble the solution boundary operator for Ω1 ∪ Ω2. The ordering in which
we will pick the subdomain pairs matters as it highly influences the parallelizability of the
resulting solver; we follow the nested dissection ordering as illustrated in Figure 1-right; first
we merge horizontally and then vertically.

Horizontal merge (left Ω1 and right Ω2). The true solution of (1) is continuous and
has balanced fluxes (i.e., residuals) across the interface, i.e.,

u1(ι
I
1) = u2(ι

I
2) and r1(ι

I
1) + r2(ι

I
2) = 0. (6)
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Recalling (5) and blocking it according to ι∂e = ιIe ∪ ι
∂\I
e for e = 1, 2 gives[

re(ι
∂\I
e )

re(ι
I
e)

]
=

[
Se(ι

∂\I
e , ι

∂\I
e ) Se(ι

∂\I
e , ιIe)

Se(ι
I
e, ι

∂\I
e ) Se(ι

I
e, ι

I
e)

] [
ue(ι

∂\I
e )

ue(ι
I
e)

]
+

[
he(ι

∂\I
e )

he(ι
I
e)

]
. (7)

Summing the second block-rows for e = 1, 2, using (6) and reordering gives(
S1(ι

I
1, ι

I
1) + S2(ι

I
2, ι

I
2)
)
u1(ι

I
1) = −

∑
e=1,2

he(ι
I
e) + Se(ι

I
e, ι

∂\I
e )ue(ι

∂\I
e ). (8)

Returning to (7), we concatenate the equations for the residuals on the “merged boundary”

re(ι
∂\I
e ), e = 1, 2, use (8) in both and reorder so as to obtain[

r1(ι
∂\I
1 )

r2(ι
∂\I
2 )

]
= SH

[
u1(ι

∂\I
1 )

u2(ι
∂\I
2 )

]
+ hH, (9)

i.e., the horizontally merged boundary solution operators as in (5) with

SH =

[
S1(ι

∂\I
1 , ι

∂\I
1 ) 0

0 S2(ι
∂\I
2 , ι

∂\I
2 )

]
−[

S1(ι
∂\I
1 , ιI1)

S2(ι
∂\I
2 , ιI2)

] (
S1(ι

I
1, ι

I
1) + S2(ι

I
2, ι

I
2)
)−1

[
S1(ι

I
1, ι

∂\I
1 ) S2(ι

I
2, ι

∂\I
2 )

]
,

hH =

[
h1(ι

∂\I
1 )

h2(ι
∂\I
2 )

]
−

[
S1(ι

∂\I
1 , ιI1)

S2(ι
∂\I
2 , ιI2)

] (
S1(ι

I
1, ι

I
1) + S2(ι

I
2, ι

I
2)
)−1(

h1(ι
I
1) + h2(ι

I
2)
)
.

Vertical merge (bottom Ω1 and top Ω2). Say we have “horizontally” merged the
boundary solution operators for two couples of subdomains Ω1L,Ω1R and Ω2L,Ω2R, e.g. the
merges 1○ and 3○ in Figure 1, and we are ready to merge along the vertical interface –
labeled 9 and 10 – and then also at the corner point enclosed between the already merged
interfaces. First, keeping the enclosed corner DoF, indexed2 by ιCΓ ≡ c, uneliminated, the
steps in merges 9 and 10 carry through identically to the horizontal merges 1○ or 3○, only

now the index set ιIe is disjoint, e.g., ιI1 = ιT1L ∪ ιT1R, and the index sets ι
∂\I
1 , ι

∂\I
2 contain the

enclosed corner index ιCΓ . That is, we have[
r1(ι

∂\I
1 )

r2(ι
∂\I
2 )

]
= SV

[
u1(ι

∂\I
1 )

u2(ι
∂\I
2 )

]
+ hV, (10)

2We use ιCΓ ≡ c as an absolute index across the indexing in the four subdomains Ω1L,Ω1R,Ω2L,Ω2R, even
though the point has likely a different index in each of them.
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with the vertically merged boundary solution operators as in (5), i.e.,

SV =

[
S1(ι

∂\I
1 , ι

∂\I
1 ) 0

0 S2(ι
∂\I
2 , ι

∂\I
2 )

]
−[

S1(ι
∂\I
1 , ιI1)

S2(ι
∂\I
2 , ιI2)

] (
S1(ι

I
1, ι

I
1) + S2(ι

I
2, ι

I
2)
)−1

[
S1(ι

I
1, ι

∂\I
1 ) S2(ι

I
2, ι

∂\I
2 )

]
,

hV =

[
h1(ι

∂\I
1 )

h2(ι
∂\I
2 )

]
−

[
S1(ι

∂\I
1 , ιI1)

S2(ι
∂\I
2 , ιI2)

] (
S1(ι

I
1, ι

I
1) + S2(ι

I
2, ι

I
2)
)−1(

h1(ι
I
1) + h2(ι

I
2)
)
.

Corner merge (corner of Ω1L,Ω1R,Ω2L,Ω2R). Analogously to (6), we have

u1(c) = u2(c) = u(c) and
∑
e=1,2

re(c) = 0. (11)

Collecting the ιCΓ ≡ c equations from (10) and inserting them into (11) gives∑
e=1,2

Se(c, c)u(c) = −
∑
e=1,2

Se(c, Ee)ue(Ee) + he(c),

where Ee are the indices of points on ∂Ωe ∩ ∂(Ω1 ∪Ω2). Solving for u(c) and inserting back
in (10) gives a system on the exterior index set E := E1 ∪ E2 for fluxes

r(E) = Scorner u(E) + hcorner with

Scorner = SV(E,E)− SV(E, c)
(
SV(c, c)

)−1

SV(c, E),

hcorner = hV(E)− SV(E, c)
(
SV(c, c)

)−1

hV(c),

with identical structure of the resulting boundary solution operator as in (10) or (9).
What is the point? First, this treatment of the corner points is fundamentally different

to the “change of basis” approach used, e.g., in [22] – no retabulation, rather following the
same ground ideas behind HPS. Second, it is also fundamentally different from the “ignore”
approach used, e.g., in [9], as that is simply not an option due to the corner point DoFs
coupling. Third, this is in fact very similar to [21], but outlined only within the SEM
context with the aforementioned benefits. Our point is that the corner points should be
merged once the surrounding interfaces have been merged to maximize the efficiency and
doing that follows analogous steps used before, even when using fully coupled corner DoFs
of FEM.

2.3 The recursion stage

Having successfully eliminated the interface and enclosed corner DoFs, we recurse and con-
tinue until reaching a problem on ∂Ω, where the Dirichlet trace is known. Let Ω =

⋃
eΩe be
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Table 1: Average speedup (left) and break-even solves (right) relative to MATLAB’s back-
slash.

Speedup Break-even solves

# subdomains

# elements p/subdomain
4× 4 8× 8 16× 16 32× 32 4× 4 8× 8 16× 16 32× 32

4× 4 1 3 5 12 N/A 4 2 2
8× 8 2 6 9 17 5 4 3 2
16× 16 3 7 21 28 5 5 4 3
32× 32 4 11 26 35 7 5 4 4

the decomposition into subdomains, each with its local DtN (Se,he). The global system on
the skeleton – i.e., on

⋃
e ∂Ωe – reads

S u(∂) = h(∂),

where S is built from Se based on the interface continuity and flux balances. We order
the boundary indices ι(∂) =

⋃
e ι

∂
e by the merging hierarchy: first domain boundaries, then

merged interfaces and enclosed corners (following the nested dissection ordering). Hence the
to-internalize indices come after the active exterior indices,

ι(∂) =
(
ι
(1)
ext, ι(1)merge, ι(2)merge, . . . , ι(L)merge

)
,

where ι
(ℓ)
merge are the indices eliminated at recursion level ℓ. Then S has the structure

S =

[
SEE SEM

SME SMM

]
,

where E and M representing the exterior and to-be-merged blocks. The merge step corre-
sponds precisely to eliminating the SMM block via its Schur complement:

ŜEE = SEE − SEM S−1
MM SME and ĥE = hE − SEM S−1

MM hM ,

where (ŜEE, ĥE) defines the reduced DtN operator and right-hand side of the updated skele-
ton after that merge. Proceeding recursively the calculation always follows the same two-
domain pattern, possibly extended by enclosed-corner junctions. That is the HPS skeleton
solver can be interpreted as a single recursive Schur complement elimination applied to the
global skeleton matrix S. Each recursion step in HPS corresponds to eliminating the block
(ι

(ℓ)
merge, ι

(ℓ)
merge) corresponding to indices merged at that level of the hierarchy. At the top

of the recursion we get the final reduced operator S(L) on ∂Ω, whose equilibrium equation
represents the DtN map of Ω.

3 Numerical illustration

We conclude by showcasing the performance of HPS, implemented in MATLAB with very
few optimizations. The build stage is computationally costly so the method is useful when
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we have several different right-hand sides. We run our tests on a laptop with 32GB RAM
and a i7-12700H Intel microprocessor with six 4.7 GHz performance cores, eight 3.5GHz
efficient cores and twenty total threads with performance-core hyperthreading. We take the
MATLAB’s backslash for the skeleton problem as the benchmark (ignoring the reconstruc-
tion). This comparison is stricter than a full solution comparison, where backslash would
process a significantly larger operator.
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