
Preconditioning parametrized linear systems: hierarchical maps
approach

Eric de Sturler and Michal Outrata

Abstract

We propose, analyze and numerically experiment with a new type of preconditioner maps
for sequences of systems of linear algebraic equations. Similarly to [7], we propose to renovate
a good-quality preconditioner for the first problem A1x1 = b1 so that we obtain a compara-
bly good preconditioner also for the follow-up problems Akxk = bk (k ≥ 2) in the problem
sequence. Complementary to [7] we use data-sparsity techniques, namely hierarchical matrix
formats HODLR and HSS, and propose two different preconditioner maps. We demonstrate the
quality as well as efficiency of the proposed preconditioner maps and try to further improve on
these numerically on a model problem.

1 Introduction

Consider a sequence of linear problems

Akxk = bk, for k = 1, 2, . . . , (1)

where Ak ∈ RN×N ,bk ∈ RN and denote the update matrices by Ek,k+ℓ, i.e.,

Ak = Ak−ℓ + Ek−ℓ,k, for ℓ = 1, . . . , k − 1.

In many applications the efficient solution of each of these problems requires the use of iterative
method such as Krylov methods coupled with preconditioners. Obtaining these can be computa-
tionally very demanding but overall still improves the running time significantly (see, e.g., [5] and
the references therein). Assuming we have computed a high-quality preconditioner P1 for the first
system so that the GMRES method applied to

A1P1y1 = b1, (2)

converges rapidly, we note that even for relatively small consecutive updates Ek−1,k, the GMRES
convergence with fixed preconditioner P1 can deteriorate drastically, see an illustrative example in
Figure 2 in Section 4. This means that the preconditioner P1 needs an update as well and in [7,
Section 2], the authors proposed1 a preconditioning map P,

P : (A1, Ak) 7→ Pk ≈ A−1
k A1, (3)

so that
AkPkP1 ≈ A1P1.

1A similar idea but for a more particular setting was already proposed in [1].
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In words, we shift the focus from construction of a stand-alone preconditioner for the k-th system
to construction of Pk such that the AkPk system “resembles” the original one for which we already
have a high-quality preconditioner. Alternatively, we can also think of this map as renovating the
preconditioner P1 into the precondtioner PkP1 with an important distinction that the product PkP1

is never assembled but rather kept as two separate mat-vec routines in the preconditioned GMRES
algorithm – this is preferable both because in some situations P1 is available itself only as a mat-vec
routine and because of the computational burden of performing matrix-matrix product for large
systems, which is often prohibitive. Moving forward we continue considering a right-preconditioner
but the same ideas apply to the case of a left-preconditioner. The case of split preconditioning is
more interesting and will be treated separately elsewhere.

In [7], the authors study a particular type of P in (3), using the sparse approximate inverse
technique to obtain an efficient approximation and call the resulting P the sparse approximate map
(SAM). The key point then lies in balancing the trade-off between the (structural) sparsity pattern of
Pk, which controls the computational complexity of its application, and the error introduced by the
approximation, which controls the quality of the map. In [7, Section 3], the authors experimentally
show that even for modest sparsity patterns (there the authors considered the patterns of powers
of the system matrix) and approximation error in (3), the SAM approach can be very effective.
Naturally, the area of updating preconditioners for systems of problems (possibly with only right-
hand sides changing or only system matrices changing) is much richer and we refer the interested
reader to the literature cited in [7] but also to [24] and the references therein.

Our approach is complementary to that in [7] – we want to use data-sparsity instead of the
structural sparsity to construct a suitable preconditioner map, starting with hierarchical matrix
formats such as HODLR (a non-nested format) and HSS (a nested format) but with emphasis on
the generality, so that other hierarchical formats can be easily put in the place of HODLR/HSS.
As a result we use a different map than the one in [7]. We also analyze the GMRES convergence
behavior for the preconditioned systems using our preconditioner map, doing so in a complementary
way to [7], i.e., using the pseudospectra bounds, in contrast to the spectral bound in [7]. The analysis
is not directly transferable but the approach is, i.e., our analysis approach can be applied to obtain
analogous bounds also in [7] and, reversely, the spectral bound in [7] could be adapted to our
preconditioner map as well.

The rest of the paper is structured as follows: we introduce the hierarchical approximate maps
(HAMs) as well as other necessary terms in Section 2 and analyze the GMRES convergence behavior
of the resulting preconditioners in Section 3. We explore this new approach numerically for a model
problem in Section 4 – we start by looking at the proposed bounds in Section 4.1 and continue
with exploring some basic ideas for making the preconditioner more efficient in Section 4.2. There
we explore several different directions for improving the efficiency and, finally, in summarize the
contributions in Section 5.

2 HAM: hierarchical approximate maps

We start by looking at the optimal preconditioner map for the second system – obtained by assuming
equality in (3) instead of approximation – and obtain P opt

2 as

P opt
2 = A−1

2 A1 =
(
A−1

1 A2

)−1
=

(
A−1

1 (A1 + E1,2

)−1
=

(
I +A−1

1 E1,2

)−1
.
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Replacing the solve with the matrix A1 with the application of the preconditioner P1 we obtain an
approximate preconditioner map, which requires a solve with the matrix

R̃2 := I + P1E1,2.

To make this solve efficient we approximate R̃2 in a hierarchical matrix format – here we will consider
two examples of such formats – HODLR and HSS, see [15] and [28] for an introduction to these – but
we avoid, on purpose, using any particular properties of these so that any hierarchical format can
be easily substituted for these. Generally speaking, the main appeal of using hierarchical formats
lies in the available fast hierarchical solvers with linear2 (O(N)) or almost linear (O(N logα(N))
for some α ⪆ 1) complexity with respect to the system size N . Hence, using a hierarchical format
we obtain an approximation to solving with R̃2 – we denote these two operations by H () for the
approximation in a hierarchical format and Hsolve () for the hierarchical solve and get

P2 = Hsolve (R2) , with R2 := H (I + P1E1,2) . (4)

The preconditioner for A2 then becomes P2P1 – a product which is not assembled but rather applied
piece by piece. The area of hierarchical matrices (and tensors) has yielded many very efficient
approaches and algorithms in multiple different applications (see, e.g., [4, 14, 11, 3, 16, 2, 20] and
also [13, 18, 29] among others) and has been a very active field of research for the last two decades.
The efficiency is achieved via a multilevel scheme in which we approximate certain off-diagonal
parts of the matrix in question on each level. Before generalizing to the k-th system, we recall that
before computing a hierarchical approximation we have to make quite a few choices – the format
(HODLR, HSS or some more involved formats, e.g., H and H2 matrices, see [16, Sections 6–8]),
the structure (usually given by the so-called cluster trees – row and column – and admissibility
condition), the accuracy (denoted by ϵ) or the hierarchical rank (denoted by r or by H-rank()) and
the minimal block size (denoted by β) to name the most common ones. Making a choice for all
of these, we then obtain a hierarchical matrix of a particular type. As the set of all matrices of a
particular type does not necessarily form a vector space with the standard algebraic operations, it
is common to use the so-called formatted (or hierarchical) version of the algebraic operations, such
as addition, multiplication or inversion. In the simplest form these correspond to performing the
desired operation algebraically as we would usually do for two matrices and then calculating the
best hierarchical approximation of the given type of the outcome of that operation, i.e., projecting
back onto the set of all matrices of the given type. Unfortunately, this would destroy the efficiency
for many operations and so more sophisticated algorithms have been proposed to calculate these
formatted/hierarchical operations; see [16, Section 3 and onwards]. We denote these formatted
operation using the o-notation, e.g., ⊕ or ⊗, but shall not go into any more details; we use the
hm-toolbox implementation in MATLAB of the HODLR and HSS formats, which is freely available
and is described in [21]. We elaborate on the effects of some of the above parameters later in
Section 4.

For the k-th system in (1), the preconditioner becomes PkP1 with Pk = Hsolve (Rk) and we see
two possible ways of defining Rk as a generalization of (4), namely

R
(1)
k := H (I + P1E1,k) or R

(2)
k := Rk−1 ⊕H (P1Ek−1,k) . (5)

2As usual, there is a “catch” to this statement and we comment on this in more detail throughout the manuscript.
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Once the application of P1 onto the update matrix is evaluated the rest of the operations is again
done using the formatted arithmetic. Formally, we introduce two hierarchical approximate maps
(HAMs)

P(1) : (P1, E1,k) 7→ P
(1)
k := Hsolve

(
R

(1)
k

)
,

P(2) : (P1, Rk−1, Ek−1,k) 7→ P
(2)
k := Hsolve

(
R

(2)
k

)
.

(6)

First, we note that P(1) is the natural analogue of the SAM approach in [7] but observe a key
difference – evaluating the SAM map (i.e., obtaining the matrix Rk; in [7] denoted by Nk) does not
involve P1 at all.

Second, let us highlight that the construction of R(1,2)
k requires3 (among other steps) the matrix

P1E, with E = E1,k or E = Ek−1,k. If the update matrices E would each have many non-
zero columns, then the evaluation of P1E requires many applications of P1 and can become the
bottleneck of the entire solution process. In some applications we expect our system matrices Ak

to form a “cluster”4 around A1 so that both E1,k and Ek−1,k contain roughly the same number of
non-zero columns but for other applications the matrices Ak form a “string”5 stretching away from
A1, where at each step the number of non-zero columns of Ek−1,k is manageable but already after
few steps the matrix E1,k accumulates large number of non-zero columns.

This highlights an important trade-off between the maps P(1) and P(2) – the map P(1) accumu-
lates the information in the update matrix in contrast to the map P(2) that keeps some information
from the previous steps in form of Rk−1. Moreover, P(1) allows us to change any parameters of the
hierarchical type for each system Ak. This is not the case for P(2) as the formatted sum can be
efficiently evaluated only if both matrices are of the same hierarchical type or there is an efficient
conversion in between these. However the conversions are often far from efficient, depending on the
hierarchical structures and formats involved.

Last but not least, we note that for P(2) it seems natural to keep Pk already assembled and
update it directly in contrast to storing and updating R

(2)
k – let us denote this approach as P(3).

In context of approximate preconditioner maps this idea has been used in [1], where the update to
Rk is rank one and Pk is updated directly using Sherman-Morrison-Woodbury formula. The main
appeal is in reducing the computational complexities – for both HODLR and HSS formats (as well
as for others) the cost of solving Hx = b with H in a hierarchical format of rank6 r scales as r2

while the cost of multiplying with the same H scales only as r, see (20) ahead. This approach is
not possible with P(1) – there is no update to speak of – but can be derived based on P(2), e.g.,
if we update the hierarchical inverse or the hierarchical LU factorization in some way. The fair
comparison – computational-complexity-wise – is then comparing P(3) with using P(2) to obtain

3We also note that many standard hierarchical formats can be built in a matrix-free fashion, i.e., without the need
to assemble the matrix P1E and only by having mat-vec routine v 7→ P1Ev (e.g., the HODLR format, see [21, Section
3.3]). However, the construction sometimes requires also the action of the transpose, i.e., v 7→ (P1E)Tv (e.g., for the
HSS format, see [21, Section 3.3]), which might not be always available, e.g., if P1 is itself only available as a mat-vec
routine v 7→ P1v. We shall not focus on this possibility here and will assume the necessity of the construction of the
matrix. The matrix-free adaptation will be discussed elsewhere.

4In the sense that the number of nonzero columns in E1,k does not grow substantially with k.
5In the sense that the number of nonzero columns in E1,k does grow substantially faster than that of Ek−1,k with

k.
6As noted above, the hierarchical formats keep the of-diagonal portions of the matrix in a low-rank format.

Intuitively speaking, the highest rank of these is what we call the hierarchical rank of the matrix. Precise definition
can, however, differ from format to format and can be found in the literature cited before.
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R
(2)
k and then calculating the hierarchical approximations to the inverses of the LU factors – the so-

called hierarchical factored approximate inverse method/preconditioner (H-FAINV), see [18]. The
specifics of the hierarchical arithmetic makes it so that these operations have the same asymptotics
(with respect to the system size N and the hierarchical rank r) and the constants are comparable
(see [18, Theorem 2 and Lemma 1 and below]). This means that the main appeal of the map P(3)

– the lower complexity of application of the preconditioner – can be achieved also by combining
P(2) with H-FAINV and, moreover, the extra cost of H-FAINV is comparable to one additional
formatted matrix sum. All of that is, of course, under the assumption that both P(3) and P(2)-
with-H-FAINV achieve comparable accuracy with the same hierarchical rank. We are not aware of
any experimental results but to keep the present manuscript from growing too wide we will address
this direction of updating Pk rather than Rk elsewhere. Next we turn our attention to analysis of
the proposed preconditioner maps.

3 Analysis of the HAM approach

The preconditioner maps have two points where an approximation was introduced – replacing A−1
1

with P1 and replacing the inverse/solve operation with its hierarchical approximation – and the
analysis reflects that. The first is assumed to be under control thanks to having a very good
preconditioner7 while the other is under our control by a suitable choices of the hierarchical format,
structure, accuracy and so on.

Looking at the k-th preconditioned system matrix AkP
(1)
k P1 for the map P(1), we set

R̃k := I + P1E1,k (7)

and write
AkP

(1)
k P1 = AkHsolve

(
R

(1)
k

)
P1 = B

(1)
k + C

(1)
k + D̃k (8)

with
B

(1)
k := Ak

(
Hsolve

(
R

(1)
k

)
−
(
R

(1)
k

)−1
)
P1, C

(1)
k := Ak

((
R

(1)
k

)−1
− R̃−1

k

)
P1,

D̃k := AkR̃
−1
k P1 = Ak

(
P−1
1 + E1,k

)−1
,

quantifying the three core approximation errors introduced in P(1). The first two are controlled by
the choice of the hierarchical format – the error introduced by the hierarchical LU factorization8 in
B

(1)
k (see, e.g., [14, Theorem 24]) and the error introduce by the hierarchical approximation of the

matrix P1E1,k in C
(1)
k . As most of the hierarchical formats keeps the diagonal entries explicitly, we

in fact only approximate the product P1E1,k and then add the identity along the diagonal, obtaining

C
(1)
k = Ak

(
R

(1)
k

)−1 (
R̃k −R

(1)
k

)
R̃−1

k P1 = Ak

(
R

(1)
k

)−1
(P1E1,k −H(P1E1,k)) R̃

−1
k P1. (9)

7Similarly to above, we do not mean to say that good preconditioners always provide a good approximations
of the inverse of the system matrix but rather that good preconditioners in some sense capture the essence (or a
fundamental part of it) of the problem. However, the approximation quality can serve as an indicator and can be
useful in absence of more refined tools.

8Notice that the error is introduced only there, the ensuing type and backward substitutions with the hierarchical
factors does not introduce further approximation errors.
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For P(2) we follow the same idea and notation but adjust the approximation error due to the
hierarchical matrix approximation to reflect the accumulation, i.e., we write

AkP
(2)
k P1 = AkHsolve

(
R

(2)
k

)
P1 = B

(2)
k + C

(2)
k + D̃k (10)

with
B

(2)
k := Ak

(
Hsolve

(
R

(2)
k

)
−
(
R

(2)
k

)−1
)
P1, C

(2)
k := Ak

((
R

(2)
k

)−1
− R̃−1

k

)
P1,

D̃k := AkR̃
−1
k P1 = Ak

(
P−1
1 + E1,k

)−1
,

and recalling that

R
(2)
k = R

(2)
k−1 ⊕H(P1Ek−1,k) = R

(2)
k−2 ⊕H(P1Ek−2,k−1)⊕H(P1Ek−1,k)

= I ⊕H(P1E1,2)⊕ . . .⊕H(P1Ek−1,k),

we reformulate C
(2)
k analogously to (9) and obtain

C
(2)
k = Ak

(
R

(2)
k

)−1 (
R̃k −R

(2)
k

)
R̃−1

k P1,

with

R̃k −R
(2)
k =

k∑
ℓ=2

P1Eℓ−1,ℓ −
k⊕

ℓ=2

H(P1Eℓ−1,ℓ)

=
k∑

ℓ=2

(P1Eℓ−1,ℓ −H(P1Eℓ−1,ℓ)) +
k∑

ℓ=2

H(P1Eℓ−1,ℓ)−
k⊕

ℓ=2

H(P1Eℓ−1,ℓ).

The matrix C
(2)
k captures the error accumulation due to the hierarchical approximation over the

sequence of the problems. The second part, i.e., the difference of the algebraic and hierarchical
sums of the hierarchical matrices, can be handled analogously to (9) but the error there is due to
the H-rank compression9 after the formatted sum. Altogether we see that R̃k − R

(2)
k has 2k − 1

terms that capture the hierarchical approximation error, compared to only one for R̃k − R
(1)
k : k

thanks to the k approximation errors of hierarchical format representations of P1E and k − 1 due
to the re-compression after the formatted additions. For long problem sequences this might make
P(2) less appealing10 or might require a HAM restart, where we compute a new preconditioner and
start as if for a new system sequence.

For both P(1) and P(2) we see that the last term in (8) and (10) captures the approximation
quality of P1 and is independent of the chosen map, namely we get

D̃k = Ak

(
P−1
1 + E1,k

)−1
= (A1 + E1,k)

(
P−1
1 + E1,k

)−1
= I +

(
A1 − P−1

1

) (
P−1
1 + E1,k

)−1

= I + (A1P1 − I) (I + E1,kP1)
−1 .

(11)

9As mentioned above, For most hierarchical formats the efficiency stems from keeping a relatively small hierarchical
rank r. However, after any formatted operation, the rank can quickly grow and hence, in practice, we usually
follow the formatted operation with a hierarchical rank-compression – procedure where the hierarchical matrix is
(approximately) projected onto the set of hierarchical matrices with hierarchical rank less or equal than some rmax,
see [21, Section 4.5] and also [16, Sections 7.2 and 8.8] for more details.

10As mentioned above, this can be sometimes balanced off by the accumulation of information in the update matrix
E1,k compared to the update matrices Eℓ−1,ℓ for ℓ = 2, . . . , k, which then results in a higher computational costs
both for computing and applying P

(1)
k (assuming we keep the desired accuracy fixed).
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Before addressing these further, we would like to emphasize a key difference between the HAM and
SAM approaches in the following remark.

Remark 1. The SAM approach ([7]) and its analysis does not explicitly capture the interaction
between the system change (here the update matrix E) and the original preconditioned system –
this interaction is “hidden” in the least square problem minimization and as a result the error terms
can be fully user controlled quantities, see [7, equation (2.5) and below]. In our case, however, this
interaction seems unavoidable and as a result the error contains also terms which are problem-
dependent and cannot be adjusted for by the user.

Following up on Remark 1, since we only know that Ak is non-singular for all k, it is a natural
starting point for analysis to assume that the magnitude of the update is smaller than the distance
of A1 to singularity, i.e., that ∥E1,kA

−1∥ < 1 so that indeed Ak is non-singular. Assuming that the
analogue holds also for the initial preconditioner, i.e., that

∥E1,kP1∥ =: γ < 1, (12)

we can expand the inverse in D̃k into its Neumann series, obtaining

D̃k = I + (A1P1 − I) (I + E1,kP1)
−1 = A1P1 + (A1P1 − I)

+∞∑
i=1

(E1,kP1)
i =: A1P1 +Dk. (13)

Alternatively, in many applications the update matrices E1,k have a fixed rank ν, i.e., we have

E1,k = XY T , X, Y ∈ RN×ν ,

e.g., thanks to the localization of the update in the physical domain of the underlying PDE, see
Section 4. Then, instead of using the Neumann series expansion, we use the Sherman-Morrison-
Woodbury formula and, denoting Z := P T

1 Y , obtain

D̃k = I + (A1P1 − I)
(
I +XZT

)−1
= I + (A1P1 − I)

(
I −X

(
I + ZTX

)−1
ZT

)
= A1P1 +Dk,

(14)
or, equivalently,

D̃k = I + (A1P1 − I)
(
I +XZT

)−1
= A1P1 +Dk =: I +A1P1 − I +Dk. (15)

Altogether, we can write

AkP
(1,2)
k P1 = A1P1 +B

(1,2)
k + C

(1,2)
k +Dk = I +B

(1,2)
k + C

(1,2)
k +A1P1 − I +Dk, (16)

where both B
(1,2)
k and C

(1,2)
k are expected to be small due to the control of the hierarchical errors

and we hope that the interaction of the update and the preconditioner captured by D̃k can be
efficiently treated with either “small in norm” approach or “low-rank” approach – this is in general
not guaranteed as we can have a moderate rank and γ > 1 at the same time even for an excellent
preconditioner P1, see Section 4. However, if either ν is small or γ < 1, then we can get a handle on
the matrix D̃k which, as we will see, then leads to a pseudospectral bounds for the preconditioned
GMRES convergence behavior.
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We continue with some direct bounds of the norm of the relevant matrices. For lack of further
structure of the sequence Ak, i.e., assuming only (12), the bounds for B

(1,2)
k , C

(1,2)
k are quite crude

based on the sub-multiplicativity of the standard matrix norms, and we use the Neumann series
bound to bound the norm of Dk, obtaining

∥B(1,2)
k ∥ ≤ ∥Ak∥∥P1∥

∥∥∥∥Hsolve

(
R

(1,2)
k

)
−
(
R

(1,2)
k

)−1
∥∥∥∥ ,

∥C(1,2)
k ∥ ≤ ∥Ak

(
R

(1,2)
k

)−1
∥∥R̃−1

k P1∥
∥∥∥R̃k −H(R̃k)

∥∥∥ ,
∥Dk∥ ≤ γ

1− γ
∥A1P1 − I∥,

(17)

where ∥E1,kP1∥ = γ < 1. We note that we expect Ak

(
R

(1,2)
k

)−1
≈ A1 and therefore using these

bounds comes with a hefty prize as the hierarchical approximation error has to balance out a possibly

large terms of ∥Ak∥ and ∥Ak

(
R

(1,2)
k

)−1
∥ ≈ ∥A1∥. Assuming, in addition, that ∥P1E1,k∥ < 1 we

can write
∥R̃−1

k P1∥ ≤
∥P1∥∥P1E1,k∥
1− ∥P1E1,k∥

,

using, again, the Neumann series expansion bound, see (7). We see that our understanding would
improved if we get an insight into the interplay of the hierarchical approximation and the matrices
Ak, P1. We comment on this in the following remark.

Remark 2. From practical point of view, the bounds in (17) can be a large overestimation and some
of the reasons are, in our eyes, hard to address in general, e.g., the first inequality is unlikely to be
close to equality. However, there are some direct improvements. For example, in (8) and (10) we
can couple the matrices B

(1,2)
k and C

(1,2)
k obtaining

AkP
(1,2)
k P1 = Ak

(
Hsolve

(
R

(1,2)
k

)
− R̃−1

k

)
P1 + D̃k, (18)

so that the possibly large factors ∥Ak

(
R

(1,2)
k

)−1
∥, ∥R̃−1

k P1∥ can be disregarded, while the difference

of the matrices Hsolve

(
R

(1)
k

)
and R̃−1

k is still controlled by appropriate choice of the hierarchical
type. We choose to continue working with (17) as it highlights the important difference between
P1,P2 but all of the results below can be restated based on (18) rather than on (17).

Other reformulations that would address the terms ∥Ak∥, ∥P1∥ as well as relaxed the rather am-
bitious assumption on γ include studying the interaction of the eigenspaces of the relevant matrices
and will be treated in full length in a separately.

Hence, we proceed to give general convergence bounds for the preconditioned GMRES directly.
Adapting these to more specialized settings where further information about the systems can be
used seems like worthwhile direction for future research.

The GMRES convergence behavior for the type of systems as in (16) has been already studied
using the pseudospectral bounds – the perturbed system matrix in [23] and the low-rank plus small-
norm perturbation to the identity matrix in [8]. Before applying these results to our situation, we
recall that for any δ > 0 the δ-pseudospectrum of a matrix M , denoted by σδ(M), is defined as

σδ(M) =

{
z ∈ C | ∥(zI −M)−1∥ >

1

δ

}
= {z ∈ σ(M + E) for some E with ∥E∥ < δ} ,
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and for any δ > 0 forms a union of Jordan curves surrounding the spectrum of M , denoted by
σ(M), which can be recovered by taking δ = 0. Importantly, the standard relative residual bound
for GMRES convergence using the δ-pseudospectrum reads

∥rm∥
∥r0∥

≤ Lδ

2πδ
min

deg(φ)≤m
φ(0)=1

max
z∈σδ(M)

|φ(z)|,

where Lδ denotes the arc length of the boundary of the δ-pseudospectrum of M and φ(z) is a
polynomial of degree up to m and normalized so that φ(0) = 1; for more details on pseudospectra
we refer the reader to [25] and references therein and for their use in understanding and predicting
Krylov subspace methods behavior (GMRES in particular) we refer the reader to [19, Sections 4.9
and 5.7.3] but also to the recent manuscript [10, Section 2.3] and the literature cited in these. We
follow the notation in [23] and denote the GMRES residuals corresponding to the initial precondi-
tioned problem (2) by rm (m = 1, 2, . . . ) while denoting the residuals for the system Akxk = bk

with the preconditioner P
(1,2)
k P1 by ρ

(1,2)
m (k) = ρ

(1,2)
m (m = 1, 2, . . . ). Following the calculations

in [23, 8], we obtain the following results.

Proposition 1 ([23, Theorem 2.1]). Consider a sequence of linear systems Akxk = bk for k =
1, 2, . . . and adopting the above notation, we fix some k > 1 and ⋆ ∈ {1, 2}. Let us assume that
∥E1,kP1∥ < γ < 1, that the hierarchical type used for P ⋆

k was chosen so that∥∥∥Hsolve (R
⋆
k)− (R⋆

k)
−1

∥∥∥ ≤ εB
1

∥Ak∥∥P1∥
,

∥P1E1,k −H(P1E1,k)∥ ≤ εC
1

∥Ak

(
R⋆

k

)−1 ∥∥R̃−1
k P1∥

,

and, moreover, that the initial preconditioner P1 was such that

∥A1P1 − I∥ ≤ εD
1− γ

γ
,

where εB,C,D = εB,C,D(k, ⋆) but we omit the k and ⋆ dependency to make the exposition easier for
orientation. Let ε(k, ⋆) = ε := εB + εC + εD < 1. Then for any δ/2 > ε and all m = 1, 2, . . . we
have

∥ρ⋆
m∥

∥ρ⋆
0∥

≤ ∥rm∥
∥r0∥

+ ε · Lδ

πδ2
max

z∈σδ(A1P1)
|pm(z)|,

where Lδ denotes the arc length of the boundary of the δ-pseudospectrum of A1P1 and pm(z) is the
GMRES polynomial for the initial preconditioned system (2) at iteration m.

Proposition 2 ([8, Equations 5–7]). Consider a sequence of linear systems Akxk = bk for k =
1, 2, . . . and adopting the above notation, we fix some k > 1 and ⋆ ∈ {1, 2}. Let us assume that
rank(E1,k) = ν ≪ N and that the hierarchical type used for P ⋆

k was chosen so that∥∥∥Hsolve (R
⋆
k)− (R⋆

k)
−1

∥∥∥ ≤ εB
1

∥Ak∥∥P1∥
,

∥P1E1,k −H(P1E1,k)∥ ≤ εC
1

∥Ak

(
R⋆

k

)−1 ∥∥R̃−1
k P1∥

,

9



and, moreover, that the initial preconditioner P1 was such that

∥A1P1 − I∥ ≤ εD,

where εB,C,D = εB,C,D(k, ⋆) but we omit the k and ⋆ dependency to make the exposition easier for
orientation. Let ε(k, ⋆) = ε := εB+εC+εD < 1. Then for any δ/2 > ε and any m = ν+1, ν+2, . . .
we have

∥ρ⋆
m∥

∥ρ⋆
0∥

≤ ε · Lδ

πδ2
max

z∈σδ(A1P1)
|pm(z)|,

where Lδ denotes the arc length of the boundary of the δ-pseudospectrum of A1P1 and pm(z) is the
GMRES polynomial for the initial preconditioned system (2) at iteration m.

First, we highlight that in both Proposition 1 and 2 we describe the GMRES behavior as a
function of that of the initial system. More precisely, we describe the delay behind the GMRES
behavior for the initial preconditioned system (2). Moreover, this delay is spelled out explicitly
as a function of ε but is, seemingly, only implicit as a function of the GMRES iteration m (as
highlighted in [23, p. 1071–1072]). As a result, solid grasp on the convergence of the initial system
is an important piece of information to make these results useful and we comment on this further in
the following section. Also, both Proposition 1 and 2 rely on some quantification of the interaction
of the initial preconditioner P1 with the update matrix E1,k, as highlighted in Remark 1. If these
assumptions become too crude, e.g., γ ⪅ 1, ν ≫ 1 or ∥Ak∥ ≫ 1, then we expect the convergence
bounds to also become quite crude, possibly in need of an improvement in the spirit of Remark 2.

Second, following [23], we note that both Proposition 1 and 2 give a family of bounds based on
δ > 0, rather than a single bound – see Figures 3 and 4 ahead. Increasing δ, from a certain δ0 onward,
the δ-pseudospectrum will contain the origin and due to the GMRES polynomial normalization the
bounds become useless. The common wisdom is that larger values of δ < δ0 tend to be more
descriptive at the initial convergence phase while smaller values of δ give a more accurate prediction
for later stages of GMRES, see Figures 3–4 ahead or the figures in [10, Section 3.1].

Next, we want to point out that the bounds also seems appropriate for the field of values bound
(FoV), similarly to [7, Section 2, eqns. (2.10–2.11)] for the SAM approach; see [19, Section 5.7.3]
and [10, Section 2.2] for further references on the FoV bounds for GMRES. We address this direction
in more detail in Section 4.1 below.

Last but not least, we would like to emphasize that we use the ideal GMRES bound, which
can fail to capture the observed GMRES behavior to arbitrary level based on the interaction of the
system matrix, the right-hand side and the initial guess, see [19, Section 5.7.3] for more details.
Although in practice these bounds can be very useful, it is necessary to keep their limitations in
mind. We continue by numerically investigating the proposed preconditioner maps on a particular
model example.

4 Numerical experiments

To illustrate and further explore the results of Section 3 we consider a sequence of 2D non-linear
advection-diffusion problems on a unit square Ω := [0, 1]× [0, 1] with piecewise constant coefficients
that slowly change, namely

−(pk · ux1)x1 − (qk · ux2)x2 + r · ux1 + s · ux2 = f in Ω,

u = g on ∂Ω,
(19)
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Ω1

×0.25

×
0.25

f ̸= 0

0.25

0.25 Ω2

×0.27

×
0.25

f ̸= 0

Ω10

×0.43

×
0.25

f ̸= 0

Figure 1: Geometry of the sequence of ten problems in (19).

with constant advection coefficients r = s = −5 and piecewise constant diffusion coefficients pk, qk

pk(x) = qk(x) =

{
= 5 if x ∈ Ωk,

= 0.1 otherwise,

where for k = 1, . . . , 10 we have a small square Ωk ⊂ Ω that is slowly moving in the x2 direction
upwards as k increase, see Figure 1. Having the fixed source terms f and g as

f(x) =

{
= 104 if x ∈ [0.405, 0.455]× [0.705, 0.755],

= 0 otherwise,

g(x) =

{
= 2 sin(8πx1) if x2 = 0,

= 0 otherwise,

we obtain a sequence of ten linear problems for k = 1, . . . , 10.
We discretize (19) using the finite difference method with the standard 5-point stencil, obtaining

a sequence of linear algebraic systems as in (1), and we notice that all of the update matrices Eℓ,k

have comparable number of non-zero columns, i.e., we both P(1) and P(2) are experimentally ad-
missible. We calculate P1 using the MATLAB’s routine ilu with options = ’crout’ and droptol
= 1e-6, which we consider an expensive-to-calculate, high-quality preconditioner and we solve the
problems Akxk = bk for k ≥ 1 with the preconditioned GMRES method using P1 for all ten prob-
lems. We show the number of iterations in Figure 2 (left) based on the number of unknowns N .
We see that already for moderate problem sizes there is a large increase in number of iterations for
k ≥ 2, making this a good test case for our purposes – we wish to make a better use of P1 for k ≥ 2.
Apart from this feature (which is common for many preconditioners), we do not consciously build
upon any particular structure or nature of P1, i.e., it is just a common choice that is meant to be
easily replaceable by a user provided preconditioner for Akx1 = b1.

For all our experiments, we use the MATLAB implementation of the HODLR and HSS formats
given in [21] with necessary adjustments and unless specified otherwise, the parameter settings are
left on their default. Using the predefined formats HODLR and HSS directly, we see in Figure 2
(left) that both P(1) and P(2) keep the number of iterations very low11 (in fact constant) for all ten
problems. Although this looks like a positive result, Figure 2 (right) shows the hierarchical rank r

of the hierarchical matrices R(⋆)
k for k = 1, . . . , 10, which determines the efficiency of the application

11We show this only for the problem with the largest size – highlighted by the color – but this was true for any
problem and size we have experimented with.
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Figure 2: Left: the number of preconditioned GMRES iterations to reach the relative residual 10−10

using the preconditioner P1 (◦) for different N and also using the preconditioner maps P(1),P(2) for
hierarchical formats HODLR (♢,⋆) and HSS (□,▷). Right: the hierarchical rank of the matrices
P

(1,2)
k for the given format with N = 73984.

of these preconditioners. As the Hsolve operation complexity scales as

O
(
r2N log2(N)

)
and O

(
r2N

)
, (20)

for the HODLR and HSS formats12 (see [21, Table 3]) we see that applying these preconditioner is
not efficient – in fact for both of these formats these complexities become comparable with O

(
N2

)
,

which is the standard complexity for the backward and forward substitutions for a general factored
preconditioner (such as P1).

Remark 3. We decided to use and present the hierarchical rank of the matrices in HODLR/HSS
formats as the measurement of the efficiency of their application rather than resorting to timings of
these. There are several reasons for that, starting with the computational environment of the cluster
at Virginia Tech and ending with the interaction of the hm-toolbox and the MATLAB environment
that requires a deep insight into both MATLAB as well as into the particularities of the toolbox
implementation to guarantee efficiency. Recognizing that in practice we are much more likely to
use the hierarchical format libraries in C or C++ (see, e.g., [6, 12]), we seek a reasonable proxy to
measure the efficiency also in the MATLAB environment, where the analysis of the preconditioners
is significantly easier, and the hierarchical rank is a clear indicator based on the analysis of the
hierarchical formats, see, e.g., [16].

We continue by looking first at the numerical results illustrating the above analysis in Section 4.1
12Notice that the favorable complexity for the HSS format is balanced out by the notably higher hierarchical rank.

This is to be expected has been our experience in general and, as a result, makes both formats competitive.
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and then continue in Section 4.2 by numerically investigating possible adjustments to the hierarchical
types so that the considered preconditioners become more efficient.

4.1 HAM bounds

Pseudospectra We start with a closer look at the bounds in Proposition 1 and 2 – both of them
contain the quantity

ε

δ/2
S̃m(δ), with S̃m(δ) :=

Lδ

2πδ
max

z∈σδ(A1P1)
|pm(z)|, (21)

where Lδ denotes the arc length of the boundary of the δ-pseudospectrum of A1P1, pm(z) is the
GMRES polynomial for the initial preconditioned system (2) at iteration m and S̃m(δ) constitutes
an upper bound on the preconditioned GMRES convergence for that problem. Clearly, this quantity
needs to be evaluated or further estimated in order to obtain the desired convergence bounds as was
already highlighted in [23, p. 1071–1072]. However, our set-up gives us a powerful tool – we have
already run the preconditioned GMRES method for the initial system. In the context of the original
work, this is not the case as one is interested in solving only the perturbed system, possibly not
even having access to the unperturbed one. As a result we have at our disposal the (m + 1)-by-m
matrix Hm+1,m (with entries hij) coming out of GMRES applied to (2).

If GMRES terminated at iteration µ̃ with hµ̃+1,µ̃ = 0, then we found an invariant Krylov
subspace, which by definition contains all relevant information for understanding the GMRES con-
vergence and the system matrix in (21) (in our case A1P1) can be equivalently replaced by Hµ̃,µ̃, i.e.,
the µ̃-th leading principal submatrix of Hµ̃+1,µ̃. In practice, this is almost always ill-advised as we
are satisfied with the approximate solution at some earlier iteration µ < µ̃ and as a result we have
hµ+1,µ ̸= 0 when GMRES terminated. Nevertheless, we use the pseudospectra of Hµ,µ (or Hµ+1,µ)
as an approximation to those of the system matrix before hµ+1,µ = 0, obtaining only a GMRES
convergence estimates rather than bounds, see [10, Section 4 and Theorem 4.1] and the references
therein. In practice, this becomes an efficient tool for evaluating (21) – from the beginning we aim
to make good use of a very efficient preconditioner P1, meaning that µ ≪ N and hence Hµ,µ (or
Hµ+1,µ) are small matrices. As a result, calculating the harmonic Ritz values (which characterize
the GMRES polynomial pµ(z), see [19, Section 5.7.1]) as well as the δ-pseudospectrum13 σδ (Hµ,µ)
(or σδ (Hµ+1,µ)) becomes computationally insignificant compared to the GMRES method to be run
for k = 2, 3, . . . and so does the evaluation of (21). Hence, we can evaluate these estimates for
a given ε a-priori, in theory allowing us to choose appropriate values of εB,C,D(k, ⋆) so that an
appropriate hierarchical type can be used.

We show the δ-pseudospectra of Hµ,µ together with the estimates Sm(δ, µ) of S̃m(δ) with

Sm(δ, µ) :=
Lδ

2πδ
max

z∈σδ(Hµ,µ)
|pm(z)|, m = 1, 2, . . . ,

13As of now, the EigTool package ([26]) used in the community as the default tool to calculate pseudospectra does
not support calculation with large sparse matrices due to compatibility issues with newer releases of MATLAB and
hence we cannot investigate how well the pseudospectra σδ (Hµ,µ) (or σδ (Hµ+1,µ)) approximate σδ (A1P1). However,
precisely this process, i.e., approximating the large sparse matrix with the small dense matrix Hm+1,m coming out of
m steps of the Arnoldi process, was the fundamental process on which the EigTool was built and it also has become
a “default workaround” in the community to obtain the pseudospectra of large sparse matrices until the functionality
of EigTool gets restored, see [10, 27, 26].
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Figure 3: Top: the GMRES convergence together with the PSA bounds Cm(δ) for various δ; Bottom:
the boundaries of the δ-pseudospectra inducing the bounds together with the Ritz values (∗). We
fixed N = 73984 and obtained P1 via the MATLAB routine ilu(A1) with options.type = ’crout’
and options.droptol = τILU. The colorbar for the bottom row gives the decadic logarithm of δ,
as suggested by the legend at the top.

where µ depends on the given GMRES relative residual tolerance τGMRES, in Figure 3, taking
τGMRES = 10−8. We see that the estimates are generally reasonably accurate although they resulted
in a slight underestimation of the relative residual at iteration m = 3 for τILU = 10−4. Importantly,
these estimates can be now inserted in Propositions 1 and 2 to obtain convergence estimates for the
preconditioned GMRES convergence behavior for k ≥ 2 and the better the estimates Sm are, the
more accurately we will be estimating the behavior of our preconditioners.

We also note that even if we aim only for reducing the relative residual below, say, 10−8, it might
be worthwhile calculating few extra iterations beyond µ for the initial preconditioned system. At
the cost of running few extra iterations for the system (2), we obtain more detailed information for
evaluating the estimates Sm(δ, µ) and as a result a better indicator for choosing ε in Propositions 1
and 2. For example, the estimates in Figure 3 cannot give a prediction of the required number of
iterations to converge below τGMRES – because the bounds/estimates necessarily overestimate the
relative residual and we stopped the GMRES iteration precisely at the moment when the relative
residual reached τGMRES . Hence, the estimates necessarily stopped (well) above that threshold and
they cannot be further extended (as we do not have the following Hessenberg matrices to calculate
the pseudospectra and the optimal GMRES polynomials). Running couple of additional iterations
of GMRES can give us this information so that we get estimates for the number of iterations to reach
τGMRES and these can be then used in Propositions 1 and 2. To be more precise, we multiply these
estimates by 2ε/δ < 1 as in (21) and then add this convergence curve to the observed convergence
behavior of the system A1P1 in Proposition 1 or we consider this bound starting only at iteration ν in
Proposition 2. We show an example in Figure 4, where we took extra 3 iterations (for τILU = 10−6)
and extra 7 iterations (for τILU = 10−4), corresponding to the ill-advised case of τGMRES being the
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Figure 4: Top: the GMRES convergence together with the PSA bounds Cm(δ) for various δ; Bottom:
the boundaries of the δ-pseudospectra inducing the bounds together with the Ritz values (∗). We
fixed N = 73984 and obtained P1 via the MATLAB routine ilu(A1) with options.type = ’crout’
and options.droptol = τILU. The colorbar for the bottom row gives the decadic logarithm of δ,
as suggested by the legend at the top.

machine precision, (which almost always corresponds to oversolving the algebraic system) – we see
that indeed the estimates now give a concrete prediction for number of iterations of preconditioned
GMRES so that the relative residual reaches the threshold 10−8.

This example also highlights that when it comes to the estimates, the hurdle to overcome are
the ε and/or ν parameters, just as predicted in Remark 2 – using Propositions 1 and 2 we have
to settle for values that are overly restrictive. As highlighted in Section 3, the reason for the
bounds being quite crude is the general scope of the analysis – by a direct calculation, we obtain
γ ≫ 1 and ν ≈ 103, meaning that the convergence bounds are no good in describing GMRES
convergence behavior. Nevertheless, we still find the results useful in outlining the general idea of
the HAM approach and improving on these is a subject of ongoing research, focusing on relaxing
the assumptions in Propositions 1 and 2. Here, instead, we briefly touch upon the field of value
bounds and then turn our attention to the issue of efficiency raised at the beginning of Section 4,
thus finalizing the introduction of the HAM approach.

Field of values Building upon Section 3, we look at the contributions of the terms in (8) and (10)
to enlarging the field of values of the preconditioned system. We use the MATLAB toolbox function
fv to bound and visualize the field of values (FoVs) of matrices, see [17]. We show the FoVs of the
three parts of (16) in Figure 5 for P(1) and in Figure 6 for P(2).

We see that the FoVs of B
(1,2)
k , C

(1,2)
k are centered around the origin, as these capture the

approximation error that converges to zero matrix as we decrease ϵ while the FoVs of Dk are
centered around the point 1 + 0i as expected based on (11). However, we see that for both P(1,2),
the overall FoVs of the preconditioned system for k ≥ 2 includes the origin for ϵ = 10−4, 10−2 –
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making the bound based on them useless. We note that, in theory, we could still try to make use
of the bounds by the “cutting-out” technique of Crouziex and Greenbaum, see [9]. However, this
approach is, in our opinion, highly unlikely to be successful here as the FoVs are dominated by the
second line terms, i.e., by FoVs of C(1,2)

k , which are centered around the origin. We also note that
the dominating term has always been, in our experience, either the FoVs corresponding to C

(1,2)
k

– the term due to the error of the hierarchical approximation14 – or to Dk – the term due to the
quality of P1.

Moreover, as N grows, the diameter of the FoVs of C(1,2)
k grows significantly as well, i.e., the

term corresponding to Dk dominated only for problems of small size. We also note that changing
the format to HSS either did not change the FoV meaningfully or even enlarged the diameters of
the FoVs in all of our numerical experiments. A marginal improvements can be gained using the
reformulation in the spirit of Remark 2 but, in principle, an improvement to these bounds needs to
come from a more tailored approach to the analysis for the particular problem.

Although these results are negative, they are not completely surprising – the FoV bounds are
generally expected to be at best as descriptive as the bounds based on pseudospectra but often
much less so, see [10, Section 3.1 – No Example: Only FOV descriptive]. We also note that based
on (8) and (10) we can give a proper bound, as suggested already in [7, Section 2, eqn. (2.8)] for
SAM but based on the above insight, we see that such bound is not of much interest in general.

Figure 5: The bounds of FoVs for the three parts of the preconditioned systems for k = 2, . . . , 5
for the map P(1) different values of ϵ. We show the results only for the HODLR format and fixed
β = 128 and N = 18769.

14Notice that this term differs meaningfully between the maps P(1,2) – we predicted this in the analysis in Section 3
and now confirmed it in Figures 5 and 6.
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Figure 6: The bounds of FoVs for the three parts of the preconditioned systems for k = 2, . . . , 5
for the map P(2) different values of ϵ. We show the results only for the HODLR format and fixed
β = 128 and N = 18769.

4.2 HAM efficiency

We return to the issue highlighted at the beginning of this section, namely that applying the HAM
preconditioners P (1,2) is, complexity-wise, comparable to a Gaussian elimination for a pre-factored
preconditioner. First, let us emphasize, that part of the problem that HAM is addressing is the
fact that we do not have that pre-factored preconditioner but we acknowledge that such a high
complexity is not feasible if we want to have a competitive preconditioner scheme. To understand
why the hierarchical rank becomes so high, we take a closer look at the predefined settings of the
used MATLAB hm-toolbox by Massei and Kressner, see [21].

In their implementation, both HODLR and HSS use the basic balanced binary tree as the
cluster tree with the standard admissibility condition and therefore either of these formats is further
characterized by only two parameters – the minimal block-size β ∈ N and the accuracy threshold ϵ.
Increasing β corresponds to stopping the hierarchical blocking of the matrix at an earlier stage and
therefore preserving larger diagonal blocks of the original matrix exact. Decreasing ϵ corresponds
to requiring a more accurate overall approximation within the chosen format by virtue of increasing
the hierarchical rank of the approximation (for more detailed description, we refer to the literature
cited in Section 3 and to [21] and the references therein). The default values are set to β = 256 and
ϵ = 10−12. While these might be perfectly reasonable as a standalone, the first natural step in our
context is investigate the effect of relaxing these on the hierarchical rank of the resulting matrices
R

(1,2)
k . We note that although there is some relevant theory linking ϵ with the hierarchical rank r,

see, e.g., [4], to the best of our knowledge all analysis in this direction is considered in the limit as
ϵ → 0 – the opposite of what we want to look at. Hence we resort to numerical investigation.
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Figure 7: Number of iterations of the preconditioned GMRES (left) and the hierarchical rank of
the matrix Rk (right) plotted against the system sequence (top) and system size (bottom) for the
map P(1) for both HODLR and HSS formats and various values of ϵ. Here we fixed β = 256 and
N = 73984 for the top row and k = 10 for the bottom row.

Effect of β and ϵ First, we note that changing the block size β had little to no effect on the
quality of the preconditioners. We ran extensive amount of experiments, varying both β ∈ [32, 2048]
as well as the system size N ∈ (103, 105) for both maps P(1),P(2) and for both formats HODLR and
HSS and found that both the rank as well as the number of GMRES iterations are quite stable with
respect to changing β, even though these do change a little more for β = 1024, 2048 – lowering the
number of iterations and varying the hierarchical rank (notably but not significantly). Looking at
the runtimes, our experience was that β and N should be kept proportional so that the cluster tree
has more or less constant number of levels. We are, however, aware of implementation limitations
of the hm-toolbox in MATLAB and more experiments and analysis is needed in this direction.

In contrast to that, changing the accuracy ϵ had a significant impact on both the number of
iteration of preconditioned GMRES as well as on the hierarchical rank and we illustrate this in
Figures 7–8. We see a notable difference for most of the values of ϵ – smaller values result in more
accurate approximations and hence lower number of iterations but require a higher hierarchical
rank. Altogether, we see that the number of preconditioned GMRES iterations remains more or
less constant for k = 1, . . . , 10 with much lower hierarchical rank compared to Figure 2 and with a
significant improvement compared to using P1, even for a quite poor accuracy ϵ = 0.1, see Figure 2.

Comparing the maps P(1) and P(2), we see that P(1) results in lower number of GMRES iterations
but requires a higher hierarchical rank to do so. Recalling (20), a fairer comparison is to compare
the number of iterations times the cost per iteration. Denoting the number of GMRES iterations
with the map P(i) by n(i) and the resulting hierarchical rank by r(i), the map P(1) becomes more
efficient provided that

(n(2)/n(1))−1/2 < r(2)/r(1). (22)
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Figure 8: Number of iterations of the preconditioned GMRES (left) and the hierarchical rank of
the matrix Rk (right) plotted against the system sequence (top) and system size (bottom) for the
map P(2) for both HODLR and HSS formats and various values of ϵ. Here we fixed β = 256 and
N = 73984 for the top row and k = 10 for the bottom row.

However, even in this better comparison, the map P(1) is favorable to its counterpart, in spite of
the higher hierarchical rank. This is, perhaps, to be expected due to the lack of error accumulation
compared P(2). Since the number of nonzero columns for E1,k and Ek−1,k is roughly the same, there
is no direct counterweight to this benefit – the somewhat higher hierarchical ranks of P(1) are well
compensated for.

Comparing the HODLR and HSS formats, we see that the hierarchical rank as well as the
number of GMRES iterations for the HSS format tends to be higher for both P(1),P(2). However,
recalling the complexities in (20), we see that this does not necessarily make the HSS format less
efficient as the extra term of log2(N) in the HODLR complexity can offset these differences. In fact,
for N ⪆ 5000, the HSS format runtimes15 of the results plotted on Figures 7–8 are comparable or
even significantly lower than if using the HODLR format, as N increases.

Last but not least, we see that with growing N both the number of iterations as well as the
hierarchical ranks grow. This is not surprising as incomplete factorization preconditioners, such as
P1, are known to exhibit this behavior, i.e., we cannot hope for anything better in terms of GMRES
iterations in general. Importantly, looking at the hierarchical rank growth, we are, unfortunately,
still on the same N2-like trajectory for almost all values of ϵ, regardless of the format and map used16.
In order to address this issue, we look for further approximations with the goal of decreasing the

15These need to be taken with the same caveats as above with respect to performance of the hm-toolbox and
MATLAB. Also, the H-FAINV approach would likely change this as the scaling of the application of the preconditioner
with respect to the hierarchical rank would become linear compared the currently quadratic one.

16We note that the problem with N = 18769 was in some sense exceptional as the system matrices were consistently
easier to approximate (resulting in a lower hierarchical rank) but resulted in a worse preconditioner (hence higher
number of iterations).
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Figure 9: We show the hierarchical ranks of the resulting matrices Rk for the HODLR format when
sparsifying the matrix E1,k (Ek−1,k) for the map P(1) (P(2)) in the first row (second row) and the
number of GMRES iterations (capped at 350) with the sparsified preconditioner compared to no
sparsification. We fixed β = 256 and N = 37249.

hierarchical rank as well as the cost of construction of the preconditioner. For the SAM approach,
the authors explored a similar direction by prescribing a fixed sparsity pattern of the preconditioner
(and hence putting the complexity of the application of the preconditioner under the user control)
and it turned out that the GMRES iteration count did not suffer significantly even from restrictive
sparsity patterns (compared to the exact solution). We consider a similar approach in the following
two sections – first structural sparsification, where some non-zero entries are dropped, and then
data sparsification, where we truncate the hierarchical ranks.

Structural sparsification In our model problem the update matrix E (standing for either E1,k

or Ek−1,k depending on the chosen map) has only relatively few non-zero columns, each of which
has only very few non-zero entries, as is the case in many applications. Having E structurally
sparse, the idea of further sparsification seems at first natural in order to reduce the amount of
information that needs to be captured by the hierarchical format approximation. In fact, there
are two options – we can either sparsify the update matrix E itself or the matrix P1E before we
calculate its hierarchical approximation17 – and those are the only options as once we calculate
H(P1E), there is no possibility for dropping non-zero elements of that matrix. We investigate the
efficiency of both of the options numerically by dropping all entries that are smaller in magnitude
than a fixed tolerance τ and show representative examples of our experience in Figure 9 (sparsifying
the matrix E) and in Figure 10 (sparsifying the matrix P1E).

17Notably, the later option would be harder to implement in the case of matrix-free assembly of the hierarchical
format mentioned in Section 3. However, as we will see, there doesn’t seem to be a reason to be concerned about
this issue.
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Figure 10: The hierarchical ranks of the resulting matrices Rk for the HODLR format when spar-
sifying the matrix P1E1,k or P1Ek−1,k. We fixed β = 256 and N = 37249.

First, we see that there is an important distinction between sparsifying E and P1E – the former
in fact does decrease the hierarchical rank (sometimes even significantly) while the latter does the
opposite, it increases the hierarchical rank, and quite noticeably. This is a key difference that can
be heuristically understood on the following example: consider the matrices

M =

10 5 2.5
1 0.5 0.25
0.1 0.05 0.025

 =

10
1
0.1

 [
1 0.5 0.25

]
and Msp =

10 5 2.5
1 0.5 0
0.1 0 0

 ,

where Msp is obtained by sparsifying M with the drop tolerance τ = 1/3. When we sparsify P1E,
the analogue of this occurs blockwise and destroys the low-rank structure that is naturally present
due to the ellipticity of the underlying differential operator: the approximability in general stems
from large blocks of the matrix being almost constant with only few outliers and hence dropping
entries can disrupt these almost constant blocks and even a relatively small drop tolerance can
make the hierarchical rank explode, see [4] but also [22, Chapters 1–4] and the references therein.
Notice that this problem does not appear when we sparsify before we apply P1, i.e., before we let
the discretized differential operator act on the update matrix – quite on the contrary. In the case
of sparsifying E, our initial intuition of decreasing the amount of information to approximate is a
correct one – the non-zero columns of P1E are linear combinations of columns of P1 with coefficients
stored in the columns of E and hence the sparsification of E moderates the number of the terms in
these linear combinations. Assuming P1 mimics the well-approximability in a hierarchical format
of A−1

1 , having fewer of these columns combined leads to lower hierarchical rank.
However, we see that the information decrease has a drastic effect on the quality of the precon-

ditioner in terms of GMRES iterations – we capped the maximal number of GMRES iterations at
350 and only the second system converged, taking about 330 iterations to reach the 10−10 relative
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residual. Compared to the non-sparsified preconditioners and keeping (22) in mind, we see that the
structural sparsification – either of E or P1E – is unlikely to improve the overall efficiency of our
preconditioners, based on the shown data as well as our general experience. We note that these
observations remained true when varying other relevant parameters, such as the format (for brevity
we do not show the analogous plots for the HSS format), accuracy ϵ, the drop tolerance τ and the
size of the system N (with the caveat that for small systems, these effects are significantly damped).

Data sparsification As the structural sparsification did not yield the desired effect, we turn our
attention to data-sparsification – truncation of the hierarchical rank of the considered matrices.
This direction is the proper analogue of the fixed (structural) sparsity pattern in the SAM approach
mentioned above – we replace the structural sparsity in both the map and in its further restriction
by data-sparsity. The truncation for the HODLR format then consists of blockwise truncation,
following the blocking of the format. For the HSS format, things are a bit more involved as the
format itself is more delicate – following the notation of the hm-toolbox in [21] we calculated the
SVD of the core matrices S

(ℓ)
ij stored in the B12,B21 attributes of the HSS class and truncated it (as

well as the other corresponding matrices in the format in order to reap the computational efficiency
benefits of the truncation).

Similarly to the analysis in Section 3, we have only one option for hierarchical rank truncation
to rmax for the map P1 – the matrix R

(1)
k – but we have two options for the map P2 – the matrix

H(P1Ek−1,k) or the matrix R
(2)
k . Clearly, only the second option guarantees the rank to be lower

than rmax as the formatted sum R
(2)
k−1⊕ ranktrunc (H(P1Ek−1,k)) can increase the hierarchical rank

– in fact for this option we can bound the hierarchical rank is by 2krmax (and since the complexities
scale with the square18 of the rank, it can be up to 4k times as expensive). In practice we have
never observed anything close to this but we have observed that the hierarchical rank does somewhat
increase as k grows and sometimes can even outgrow the hierarchical rank without any truncation
– for the second option, that is. We illustrate this as well as the performance of of the resulting
preconditioners in Figure 11.

We see that the number of GMRES iterations compared to the non-truncated preconditioner
increases and this increase can be quite mild (plot in the (1,1) position) or very pronounced (plot
in the (2,2) position) depending on the way the truncation is carried out and on the map. On
one hand, we have observed that the map P1 is quite stable with respect to the hierarchical rank
truncation, and decreasing the hierarchical rank 2-5 times still gives convergence in a comparable,
say double, number of iterations. Recalling (22), this corresponds to a significant improvement in
efficiency of the truncated preconditioner. On the other hand, we observed that the map P2 is more
sensitive to the rank truncation and especially so if the truncation is applied to H(P1E) rather than
to R

(2)
k . Also, we observe that the higher the accuracy (i.e., the smaller the ϵ), the more diverse can

these differences be – partly also because higher accuracy translates naturally to higher hierarchical
ranks, which in turn leaves more space for highlighting the effects.

An explanation or at least a deeper insight into the interaction of the data-sparsification and
the preconditioner maps are left as an open direction for future research.

18As mentioned above, this can be relaxed to linear instead of square by adding the H-FAINV step.
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Figure 11: The number of GMRES iterations with fixed hierarchical ranks for P(1) (first row)
and P(2) (second row) and for P(2) when truncating the hierarchical rank of only P1Ek−1,k (third
row). The resulting hierarchical rank of R(2)

k when truncating only P1Ek−1,k as well as that of the
hierarchical rank of R(2)

k without truncation (original map) is shown below (fourth row). We show
the results only for the HODLR format and fixed β = 256 and N = 37249.

5 Conclusion and future work

We have proposed and studied – both analytically and experimentally – a new type of preconditioner
maps for sequences of systems of linear algebraic equations, using data-sparsity or, to be more
precise, using the hierarchical matrix formats HODLR and HSS. The theoretical results give a
complementary approach to analysis of preconditioner maps compared to [7] and give a direct
insight into which quantities can ensure a solid GMRES convergence. We illustrated the need for
preconditioner maps on a model example and pursued further avenues to make our maps more
efficient so that application of the preconditioner is manageable. Further analysis as well as analysis
for more particular settings is of clear interest and remains open for future research.
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