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Abstract

We show for a model problem that the truncation of an unbounded domain by
an artificial Dirichlet boundary condition placed far away from the domain of interest
is equivalent to a specific absorbing boundary condition placed closer to the domain
of interest. This specific absorbing boundary condition can thus be implemented as
a truncation layer terminated by a Dirichlet condition. We prove that the absorbing
boundary condition thus obtained is a spectral Padé approximation about infinity of
the transparent boundary condition. We also study numerically two improvements for
this boundary condition – the truncation with an artificial Robin condition placed at
the end of the truncation layer, and a Padé approximation about a different point than
infinity. Both of these give new and substantially better results compared to using the
artificial Dirichlet boundary condition at the end of the truncation layer. We prove
our results in the context of linear algebra, using spectral analysis of finite and infinite
Schur complements, which we relate to continued fractions. We illustrate our results
with numerical experiments.

1 Introduction

The solution process of problems on unbounded domains usually requires a domain trunca-
tion, and hence artificial boundary conditions, leading to techniques such as perfectly matched
layers (PML) or absorbing boundary conditions (ABC), see [4, 3]. At the discrete level, these
closely relate to the problem of approximating the Schur complement in some sense, which
inspired a number of iterative solvers, see, e.g., [10, 11] and the references therein. Our ap-
proach builds upon the eigendecomposition of the Schur complement, which for our model
problem is very closely linked with the Fourier analysis of the Schur complement or, equiv-
alently, the frequency domain analysis.

Domain truncation is also important in domain decomposition where a given computa-
tional domain is decomposed into many smaller subdomains, and then subdomain solutions
are computed independently in parallel, see [11]. The solutions on the smaller subdomains
can naturally be interpreted as solutions on truncated domains, and thus it is of interest to
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use ABC or PML techniques at the interfaces between the subdomains, see also [8, 9, 10].
The classical Schwarz method [21] uses Dirichlet transmission conditions between subdo-
mains and an overlap to achieve convergence [24]. In what follows the goal is to interpret
the overlap as a specific ABC once the unknowns of the overlap are folded onto the inter-
face (similarly to [19, 14]). Although the Schwarz method is not explicitly mentioned in
what follows, it is one of the main applications for our results, see [11] for more information
and corresponding numerical experiments. Note also that the Patch Substructuring Method
[19, 14] is precisely such a method where the overlap was folded in.

Notably, the question of the optimal PML for problems with finite difference grids has
been discussed in [16, 1] for the Laplace equation and then also extended to the Helmholtz
equation in [7]. Our interest here is however different: we want to get a mathematical
understanding of what object is obtained when one truncates an unbounded domain with a
Dirichlet boundary condition after a finite layer of given length in which one still solves the
partial differential equation, and how precisely the quality depends on this length. This is
often done by people in applications for diffusive problems (e.g. finance), and is also done in
the classical Schwarz method and all its variants like Additive and Multiplicative Schwarz.
We only have as a second goal to try to improve this, by optimizing a Robin truncation
at the end of the layer, or by modifying the equation in the entire layer in a simple way,
linking this approach to PML. We also make substantial efforts to do that in a way that is
both reasonably self-contained and easy to follow for readers from different mathematical
communities, where such simple Dirichlet truncations are used for diffusive problems. This
also includes introducing terminology for continued fractions and their types and properties
in some detail, and also the Schur complement.

We start in Section 2 with some notation and definitions and continue in Section 3 by
showing that there exists a limit of the Schur complement as the width of the truncation layer
goes to infinity, and that the Schur complement of a finite width truncation with a Dirichlet
condition is a spectral Padé approximation around infinity of the unbounded width limit.
Next, we explore numerically how the spectral approximation changes when the Dirichlet
condition at the end of the truncation layer is replaced by a Robin condition in Section 4,
present an optimized choice for the Robin parameter and propose a new type of truncation
layer in Section 5. We end with concluding remarks and possible extensions in Section 6.

2 Model Problem

We use as our model problem the partial differential equation (PDE)

(η −∆)u = f in Ω := (0,+∞)× (0, 1), η > 0,
u = 0 on ∂Ω.

(1)

We assume that the support of the right-hand side function f is localized in Ωa := (0, a) ×
(0, 1) and having b ≥ a we set Ωb := (0, b) × (0, 1) ⊂ Ω as the artificially truncated region
containing Ωa, see Figure 1.
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Figure 1: The unbounded strip domain in R2 with Ω = (0,+∞)× (0, 1).

Discretizing with a standard finite difference scheme, we denote by N the number of
interior grid columns, and obtain the mesh size h := 1/(N + 1). Assuming we have

a = (Na + 1)h and b = (N b + 1)h, (2)

we obtain the discretized problems

Au = f , Abub = f b, Aaua = fa, (3)

with the right-hand side vectors fa := [fT1 , · · · , fTNa ]T , f b := [(fa)T ,0T , · · · ,0T ]T and f :=
[(f b)T ,0T , · · · ]T , and the matrices

A? :=
1

h2


D1 −I

−I
. . .

. . .
. . . DN?−1 −I

−I DN?

 , A :=
1

h2


h2Ab −I

−I DNb+1

. . .
. . .

. . .

 , (4)

where ? stands for either a or b (and thus changes the number of block rows and block
columns) and each block has dimension N (vectors) or N × N (matrices) related to a par-
ticular set of grid column variables. The matrix I is the N × N identity and the diagonal
blocks Dj are given by

Dj := D =

ηh
2 + 4 −1

−1
. . . −1
−1 ηh2 + 4

 ∈ RN×N . (5)

Here, it is enough to understand the infinite-dimensional system in (3) as the limit of the
finite-dimensional one as b→ +∞; for more details on infinite matrices, see, e.g., the concise
review [22] or the historical overview [5].

Thanks to the localization of f we can formulate a problem only1 on Ωa such that its so-
lution coincides with ub

∣∣
Ωa

, simply by eliminating the unknowns from the truncation domain

1This is of particular interest for the domain decomposition methods, see Section 1 and also [11].
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Ωb\Ωa. This solution is then an approximation of u
∣∣
Ωa

. The continuous level formulation
requires the Dirichlet-to-Neumann operator (see, e.g., [10] in the context of domain decom-
position) and its approximation on finite difference grids in this context has been studied
in [16, 1]. We carry out this elimination by “folding in” the variables (ub

Nb , . . . ,u
b
Na+1),

starting with ub
Nb and working our way from the right to the left on the grid. Recalling (3),

for b < +∞ these satisfy the equations

−
ub
Nb−1−i

h2
+
DNb−iu

b
i

h2
−

ub
Nb+1−i

h2
= 0, −

ub
Nb−1

h2
+
DNbubNb

h2
= 0, (6)

with i ∈ {1, . . . , N b − Na}, where the index i counts the progress “from right to left” in
the domain Ωb\Ωa. The elimination process corresponds to the block Gaussian elimination
(block size N) that eventually calculates the Schur complement of the unknowns ub

∣∣
Ωa

in

Ab (see, [15, p. 103]). We summarize this in the definition below.

Definition 2.1 (Schur complement) Having b <∞ we can reduce Abub = f b to

Ãaub
∣∣
Ωa

= fa, with Ãa =
1

h2


D1 −I

−I
. . .

. . .
. . . DNa−1 −I

−I T bNa

 , (7)

where the block T bNa is called the Schur complement. It can be calculated recursively (see [20,
Sections 1.3.2 and 1.4.3]) as

T bNb := DNb = D and T bNb−i := Di −
(
T bNb−i+1

)−1
= D −

(
T bNb−i+1

)−1
, (8)

for i ∈ {1, . . . , N b −Na}.

Comparing Ãa and Aa, the only change is in the last block where the Dirichlet boundary
condition block has been replaced by the Schur complement T bNa , representing the truncation
layer (or the “far-field” domain) unknowns in Ωb\Ωa. Hence ub

∣∣
Ωa

approaches u
∣∣
Ωa

in the
limit as b → ∞, but increasing b makes the defining recurrence in (8) longer. If b goes to
infinity, the corresponding Schur complement matrix T∞Na is still governed by (8), namely

T∞Na = D − (T∞Na)
−1 , i.e., (T∞)2 −DT∞ + I = 0. (9)

Notably, this equation does not depend on Na, and hence also its solution T∞Na ≡ T∞. To
solve (9), we start the following section by changing the basis we work in to the eigenbasis
of D, effectively applying a discrete Fourier transform in the y variable.
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3 Spectral analysis

Writing D from (5) as D = Dyy + 2I, where Dyy is the 3-point finite difference stencil
discretization of η − ∂yy multiplied by h2, we recall that Dyy = QTdiag(z1, . . . , zN)Q with

zk := ηh2 + 4 sin2

(
kπ

2(N + 1)

)
and qk :=

[√
2

N+1
sin
(
kπ
N+1

j
)]N

j=1
∈ RN , (10)

where Q is unitary and symmetric, with the eigenvectors qk in its columns. We can thus
write D = QTΛQ with Λ := diag(λ1, . . . , λN) and λk := 2 + zk as its eigendecomposition.

Remark 1 Calculating in the eigenbasis of D is a necessity for our Schur complement anal-
ysis but in treating each eigenmode separately we would add yet another index to the already
loaded notation. That is why, instead of referring to the particular eigenvalues λk = 2 + zk
we will introduce a new variable λ = 2 + z and treat all quantities dependent on the eigen-
values as functions of λ. This way we avoid the index k, mostly λk and zk, whenever we
can. Nonetheless, in some places the reference to a particular eigenvalue or eigenmode is
unavoidable and we keep the index k reserved for the eigenmode notation throughout the text.

3.1 Diagonalization and convergence of the Schur Complement

Changing the basis for the Schur complement definition in (8) gives

T̂ bNb = QDQT = Λ and T̂ bNb−i = QDQT −Q(T bNb−i+1)−1QT = Λ− (T̂ bNb−i+1)−1,

where i = 1, . . . , N b−Na and all of the matrices T̂ b
Nb−i are diagonal. Working with the diago-

nal entries only, each of them becomes a function of its corresponding eigenvalue (frequency)
λk and also follows the recurrence. Recalling Remark 1, we can write

t̂bNb(λ) = λ and t̂bNb−i(λ) = λ− 1

t̂b
Nb−i+1

(λ)
for i = 1, . . . , N b −Na,

but in order to further simplify the notation, we label these scalar functions only by i rather
than N b − i and without relabeling obtain2

t̂b0(λ) = λ and t̂bi(λ) = λ− 1

t̂bi+1(λ)
for i = 1, . . . , N b −Na. (11)

We obtain an analogous recurrence for the solution ub in (6). Setting ûbNb−i := Qub
Nb−i we

get

−
ûbNb−1

h2
+

ΛûbNb

h2
= −

ûbNb−1

h2
+
T̂ b
Nb

h2
ûbNb = 0−

ûbNb−1−i

h2
+

ΛûbNb−i

h2
−

ûbNb+1−i

h2
= −

ûbNb−1−i

h2
+
T̂ b
Nb−iû

b
Nb−i

h2
= 0,

(12)

2This way, the scalar function labeling directly corresponds to the number of steps of the block Gaussian
elimination we have already carried out. This notation becomes the natural one for the mathematical tools
used later in this manuscript.
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with i = 1, . . . , N b−Na. Turning to the limit case b→ +∞ for T bNa , we can now treat each
mode separately, obtaining a scalar problem instead of (9). Setting

lim
b→+∞

t̂bNb−Na(λ) =: t̂∞Nb−Na(λ), (13)

we observe that
(t̂∞Nb−Na)

2(λ)− λt̂∞Nb−Na(λ) + 1 = 0, (14)

with the two solutions τ̂∞,1(λ) = λ+
√
λ2−4
2

and τ̂∞,2(λ) = λ−
√
λ2−4
2

, and(
τ̂∞,1(λ)

) (
τ̂∞,2(λ)

)
= 1 and 0 < τ̂∞,2(λ) < 1 < τ̂∞,1(λ). (15)

Next, we show that one of the solutions τ̂∞,1(λ), τ̂∞,2(λ) acts as the limit Schur complement
for our solution vector ub

∣∣
Ωa

.
The key observation is that the characteristic polynomial of the recurrence relation in (12)

is preserved through the limit process and thus the solutions τ̂∞,1(λ), τ̂∞,2(λ) of the limit
equation (14) coincide with the roots of the characteristic polynomial of the recurrence
relation in (12) given by pλ(r) = −r2 + λr − 1. This together with the explicit formula for
the solution of the recurrence relation (12) is enough to solve the matrix equation defining
T∞ in (9). In order to do so, we will evaluate the functions of λ at the particular points of
interest λk, i.e., at the eigenvalues of the matrix D.

Theorem 3.1 The Schur complement T bNa defined in (8) converges to T∞,1 solution of the
formal limit equation (9) as b → +∞, i.e., the eigenvectors of those matrices are equal
and the eigenvalues t̂b

Nb−Na(λk) of the Schur complement converge to τ̂∞,1(λk) for all k =
1, . . . , N .

Proof For any b large enough, we fix a particular grid-column index j ∈ {Na, . . . , N b}
and observe that the solution subvector ûbj = [ûbj,1, . . . , û

b
j,N ]T ∈ RN follows the recurrence

in (12). This recurrence has a closed form solution, namely there exist pairs of constants
(νb1, µ

b
1), . . . , (νbN , µ

b
N) independent of j such that

ûbj =

 µb1 (τ̂∞,1(λ1))
j−Na

+ νb1 (τ̂∞,2(λ1))
j−Na

...

µbN (τ̂∞,1(λN))
j−Na

+ νbN (τ̂∞,2(λN))
j−Na

 .
Furthermore, recalling (15) it follows that(

τ̂∞,1(λk)
)Nb−Na

→ +∞ as b→ +∞, for any k = 1, . . . , N.

As ûbNb = 0 for any b > a we have |ûbNb| 9 +∞ as b → +∞, showing that for each k
necessarily µbk → 0 as b → +∞. Since ûbNa converges as b → +∞ (see, e.g., [23, Sections 2
and 3]) we obtain also the limits ν∞k := lim νbk as b→ +∞ and therefore

û∞j ≡ lim
b→∞

ûbj =

ν
∞
1 (τ̂∞,2(λ1))

j−Na

...

ν∞N (τ̂∞,2(λN))
j−Na

 . (16)
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Taking j = Na + 1 we can solve the k-th entry of the recurrence in (12) for t̂b
Nb−Na−1

(λk)
and using the finite difference stencil, we obtain

t̂bNb−Na−1(λk) =
λûbNa+1,k − ûbNa+2,k

ûbNa+1,k

=
ûbNa,k

ûbNa+1,k

→ 1

τ̂∞,2k (λk)
= τ̂∞,1k ,

where we used (16) and (15) before and after taking the limit respectively. Using the defining
equation (14) we obtain

t̂bNb−Na(λk) =
1

λ− t̂b
Nb−Na−1

(λk)
→ 1

λ− τ̂∞,1k

=
1

τ̂∞,2k

= τ̂∞,1k .

�

Recalling λ = 2 + z, we can rewrite t̂∞(λ), t̂bi(λ) as functions of z instead of λ. For
simplicity we do not relabel but rather abuse the notation in the sense φ(λ) ≡ φ(λ(z)) =: φ(z)
for φ = t̂∞ and φ = t̂bi . Hence

t̂∞(z) =
2 + z +

√
(2 + z)2 − 4

2
= 1 +

z

2
+

√
z2 + 4z

2
=

(
1 +

z

2

(
1 +

√
1 +

4

z

))
. (17)

For b <∞ we recall (11) and in the same fashion obtain

t̂b0(z) = 2 + z, t̂b1(z) = 2 + z − 1

2 + z
, t̂b2(z) = 2 + z − 1

t̂b
Nb−1

(z)
= 2 + z − 1

2 + z − 1
2+z

,

and by the recursive definition in (11), the i-th term is given by

t̂bi(z) =
2 + z

h2
−

1
h2

2 + z − 1

2+z−
. . .

2+z− 1
2+z

, (18)

having i “levels” of the fraction. After some elementary calculations t̂bi(z) can be written
as a rational function of degree i + 1. Notice that each level of t̂bi(z) in (18) corresponds
to elimination of unknowns from one grid column, i.e., to one step of the block Gaussian
elimination mentioned above. This is not surprising but it gives perhaps a more pleasant
way of viewing and analyzing the matrix recurrence in Definition 3.3. We continue by a
simple observation regarding the functions t̂∞ and t̂bi .

Remark 2 By a subsequent re-insertion we obtain

t̂∞(z) = 2 + z − 1

t̂∞(z)
, t̂∞(z) = 2 + z − 1

2 + z − 1
t̂∞(z)

, . . .

and so on. This suggests that the function t̂∞(z) is equal to the infinite continued fraction

t̂∞(z) = 2 + z − 1

2 + z − 1
2+z−...

,

and t̂bi(z) in (18) are approximations in the sense of a truncation after i levels, hence t̂bi(z)
is called a truncated continued fraction.
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The theory of continued fractions links various areas of mathematics, e.g., Padé approxi-
mations, orthogonal polynomials, Vorobyev’s moment matching problem, Riemann-Stiltjess
integrals, Gauss quadrature and the method of conjugate gradients (see [18, 25, 6] and
also [17, Section 3.3.2 - 3.3.6] for further references). In this manuscript we restrict ourselves
to assume no knowledge of this field. As a result, the text is self-contained and easier to
access for a wider audience. But this comes with a price – using the full strength of the
continued fractions theory we could meaningfully refine the results as well as connect these
with the above mentioned areas. We postpone such presentation to an upcoming manuscript,
which will make a good use of the present one as a stepping stone. This also justifies the
use of [2] as our main reference, where the author uses continued fractions only as one of
the possible tools to arrive at Padé approximants – precisely the spirit in which we will use
the continued fractions. We refer the interested reader to [18, 25, 6, 17] for more detailed
expositions of the connected topics.

We continue in Section 3.2 with a concise summary of the continued fraction results and
the connected simple algebraic calculations. We formulate these in terms of an auxiliary
variable α, given by

α :=
4

z
. (19)

This change of variables is unavoidable as we will need to expand about +∞ and the standard
way of defining this is to expand the same function but of a reciprocal argument about 0 –
hence (19). This is why we do not consider (19) as a proper change of variables, which would
otherwise necessitate tedious calculations of the derivatives of the function composition. In
fact, the true change of variables consists only in multiplying by 4 and hence does not require
a re-computation of the derivatives. Hence we can rewrite t̂∞(z), t̂bi(z) once more, now as
functions of α instead of z or λ. For the sake of simplicity we again do not relabel, i.e., we
abuse the notation to have

t̂(λ) ≡ t̂(λ(z)) =: t̂(z) ≡ t̂(z(α)) := t̂(α), for t̂ = t̂∞ or t̂ = t̂bi . (20)

3.2 Padé Approximation and Continued Fractions

We follow the notation from [2], i.e., the [M/L]-Padé approximant of f(z) is denoted by
[M/L]f ≡ [M/L]f (z). We start with Padé theory and proceed with continued fractions ([2,
Chapter 4]).

Theorem 3.2 ([2, Theorem 1.5.3, 1.5.4, 1.5.1]) Let f(z) be a real function of a real
variable. Then the following holds provided the Padé approximants exist:

1. Let α, β ∈ R. Then α + β[M/L]f = [M/L]α+βf .

2. Let m ≥ 1 and f(z) =
+∞∑
j=0

cjz
j be a formal power series. Setting g(z) = 1

zm

(
f(z)−

m−1∑
j=0

cjz
j

)
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and assuming M −m ≥ L− 1 we have

[M −m/L]g(z) =
1

zm

(
[M/L]f (z)−

m−1∑
j=0

cjz
j

)
.

3. Let f(0) 6= 0 and set g(z) = 1/f(z). Then [M/L]g(z) = 1/[L/M ]f (z).

Definition 3.3 A continued fraction is given by sequences of real numbers {aj}j, {bj}j –
the numerator and the denominator sequence of the continued fraction – and has the general
form

b0 +
a1

b1 + a2
b2+

a3
. . .

=: b0 +
+∞∑
j=1

aj
bj+
≡ b0 +

a1

b1 +

a2

b2 +
. . . ,

where the sum is to be understood only formally. The continued fraction is called infinite as
long as aj, bj 6= 0 for all j. The n-th truncation (or convergent) of a continued fraction is
given by

An
Bn

= b0 +
n∑
j=1

aj
bj+

= b0 +
a1

b1 + a2

bn−2+
. . .

bn−1+
an
bn

,

where An and Bn are the n-th truncation (or convergent) numerator and denominator.
Replacing the scalars aj and/or bj by linear (or affine) functions of a real variable z, An

and Bn become polynomials in z and the n-th truncation of the continued fraction becomes a
rational function in z. Different settings of this framework lead to different types of continued
fractions. Most notably, a continued fraction is called regular C-fraction (short for regular
classical continued fraction), provided it has the form

b0 +
a1z

1 + a2z
1+

a3z

. . .

≡ b0 +
a1z

1 +

a2z

1 +
. . . ,

with aj 6= 0 for all j. If, moreover, aj > 0 for all j, then it is called S-fraction (short for
Stieltjes continued fraction). If the continued fraction takes the form

b0 +
r1

z + s1 − r2
z+s2− r3

. . .

≡ b0 +
r1

z + s1 −
r2

z + s2 −
. . . ,

with rj 6= 0 for all j then it is called J-fraction (short for Jacobi continued fraction). For
more details on the introduced types of continued fractions as well as other types of contin-
ued fractions (e.g., non-regular C-fraction, T-fraction, P-fraction,. . . ) we refer also to [18]
and [25] and references therein.

First, we note that we have ignored the questions of convergence of infinite continued
fractions and we refer the reader to [18] and [25]. Next, notice that one function can be
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represented by two seemingly different continued fractions (different in type and/or in the
coefficient values) and one way to recognize their equality is via the three-term recurrence
relation (see [2, Theorem 4.1.1, pp.106]). We have that

A−1 = 1, A0 = b0, An = bnAn−1 + anAn−2, (21)

B−1 = 0, B0 = 1, Bn = bnBn−1 + anBn−2,

and assuming the n-th truncation (convergent) of two continued fractions are equal for any
n, the infinite continued fractions are equal as well. Last but not least, we note that some
authors will call a continued fraction an S-fraction even though the fraction itself does not
meet the definition above but can be transformed into a continued fraction that does. We
next recall a basic transformation rule of continued fractions.

Lemma 3.4 ([2, Section 4.1, pp. 105-106]) Let {aj}j, {bj}j be two real sequences of the
numerators and denominators of a continued fraction as in Definition 3.3. Let {ej}j be a
sequence of real numbers different from zero. Then we have

b0 +
a1

b1 +

a2

b2 +

a3

b3 +
· · · = b0 +

e1a1

e1b1 +

e1e2a2

e2b2 +

e2e3a3

e3b3 +
. . . ,

For purposes of this text we present immediately the continued fraction result for the square
root function, which is of interest to us3.

Theorem 3.5 ([2, Section 4.6, Theorem 4.4.3 and formula (6.4) on pp. 139]) For
any α ∈ (−1,+∞)4 we have

√
1 + α = 1 +

α
2

1 +
α
2

2 +
α
2

1 +
α
2

bn−2 +

. . .

bn−1 +
an

bn + an+1

...

= 1 +
α
2

1 +

α
2

2 +

α
2

1 +
. . .

+

an
bn +

. . . , (22)

with b0 = 1, bj = 3+(−1)j

2
and aj = α

2
, j ≥ 1. Moreover, for any n the [n, n]-Padé approxi-

mation of
√

1 + α expanded about α = 0 is given by the (2n)-th truncation of the continued
fraction in (22) and the [n + 1, n]-Padé approximation of

√
1 + α expanded about α = 0 is

given by the (2n+ 1)-st truncation of the continued fraction in (22).

3We refer to the book of Baker but the original result is due to Gauss, who showed a much more general
result for the hypergeometric function 2F1; for more details see [25, Chapter XVIII] or [18, Chapter VI].

4There is a misprint in [2, equation (6.4), page 139]. The authors state the convergence “for all z except
−∞ < z ≤ 1)” but the result also holds for z ∈ (−1, 1].
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Remark 3 By a direct computation we see that

√
1 + α = 1 +

α

2 +

α

2 +

α

2 +
. . . ,

i.e., the representation in (22) can be written as a cyclic S-fraction5 with aj = 1/2 for all j.

The rest of this section is devoted to auxiliary results, the first of which links a truncation
of the S-fraction from Theorem 3.5 and a truncation of the J-fraction from Remark 2. Notice
that the continued fractions are not identical but rather differ in the absolute term.

Lemma 3.6 Let α be real and consider the two continued fractions

τ(α) :=
α
2

2 +
α
2

1 +
α
2

2 +
α
2

1 + . . .

and σ(α) :=
1

1 + 4
α
−

1

2 + 4
α
−

1

2 + 4
α
−

1

2 + 4
α
− . . .

,

and denote their n-th truncations by An(α)/Bn(α) and Cn(α)/Dn(α). For any n = 1, 2, . . .
we have

A2n(α)/B2n(α) = Cn(α)/Dn(α).

Proof Using Lemma 3.4 we transform τ(α) and without further relabeling we obtain

τ(α) :=
1

4
α

+
1

1 + 1

4
α

+
1

1 +
1

4
α

+ 1
1+...

, (23)

and by a direct computation confirm that equality holds for n = 1. Next, we notice that the
continued fraction (23) can be written in cyclic form with the core R given by

R =
4

α
+

1

1 + 1
R

, (24)

i.e., the continued fraction can be obtained by a successive re-insertion of the core equal-

5Infinite continued fractions with periodic sequences {aj}, {bj} are called cyclic continued fractions.
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ity (24) into itself, e.g.,

1
4
α

+ 1
1︸ ︷︷ ︸

=
A2(α)
B2(α)

,
1

4
α

+
1

1 + 1

4
α

+
1

1︸ ︷︷ ︸
=
A4(α)
B4(α)

,
1

4
α

+
1

1 +
1

4
α

+
1

1 +
1

4
α

+
1

1︸ ︷︷ ︸
=
A6(α)
B6(α)

, . . . .

In this way every re-insertion adds two elements of the numerator and denominator se-
quences, and using the algebraic identity

1

1 + 1
R

= 1− 1

1 +R
,

we reformulate the core equality (24) to obtain

1 +R = 2 +
4

α
− 1

1 +R
, (25)

and notice that the core equality in (25) is the one that generates the J-fraction σ(α).
Hence we have shown that for n ≥ 2 the 2n re-insertions of the core R in the equality (24)

is equal to n re-insertions of the core 1 +R in the equality (25), finishing the proof. �

We now build upon Lemma 3.6 by contracting the S-fraction in (22) into a J-fraction.

Proposition 3.7 Let α be real and set the continued fractions τ(α) and σ(α) as in Lemma 3.6.
Moreover, we define the continued fractions

τ̃(α) :=
1

1 + τ(α)
and φ(α) := 1−

1

2 + 4
α
−

1

2 + 4
α
−

1

2 + 4
α
− . . .

with n-th truncations Ãn(α)/B̃n(α) and En(α)/Fn(α) with E0 = F0 = 1. Then for n ≥ 0

A2n+1(α)/B2n+1(α) = En(α)/Fn(α).

Proof The equality for n = 0 holds by inspection. Taking n ≥ 1, we use Lemma 3.6 for the
continued fraction τ̃(α), and obtain

Ã2n+1(α)/B̃2n+1(α) =
1

1 + A2n(α)/B2n(α)
=

1

1 + Cn(α)/Dn(α)
,

12



and having the truncations Cn(α), Dn(α) of σ(α) from Lemma 3.6 it remains to show that

1

1 + Cn(α)/Dn(α)
= 1− En(α)/Fn(α). (26)

The cyclic parts of both σ(α) and φ(α) coincide and we denote them by σ̃(α),

σ̃(α) :=
1

2 + 4
α
−

1

2 + 4
α
− . . .

. (27)

In turn, this gives

σ(α) =
1

1 +
1

1 + 4
α
− σ̃(α)

and φ(α) = 1− 1

2 + 4
α
− σ̃(α)

,

and thus to show (26) it is enough to prove

1

1 +
1

1 + 4
α
− σ̃

= 1−
1

2 + 4
α
− σ̃

,

as σ̃ contains the common part. By a direct computation we obtain

1

1 +
1

1 + 4
α
− σ̃

=
1 + 4

α
− σ̃(α)

2 + 4
α
− σ̃(α)

and 1− 1

2 + 4
α
− σ̃

=
1 + 4

α
− σ̃(α)

2 + 4
α
− σ̃(α)

,

finishing the proof. �

3.3 Approximation Properties of the Schur Complement

Recall t̂bi(z) and t̂∞(z) from (18) and (17) representing the Schur complements T bi and T∞,

t̂bi(z) = 2 + z − 1

2 + z − 1

2+z−
. . .

2+z− 1
2+z

, t̂∞(z) = 1 +
z

2
+
z

2

√
1 +

4

z
.

In Theorem 3.8 we show an important approximation property of these functions. We use a
similar technique as in [12] where the authors compute a Padé approximation of the Dirichlet
to Neumann operator. This is not a coincidence: the Schur complement and the Dirichlet-
to-Neumann map have a deep connection, see, e.g., [10, Section 5.2].

Theorem 3.8 The function t̂bi(z) is the [i, i]-Padé approximation about the expansion point
z = +∞ of t̂∞(z).

13



Proof First, we transpose the expansion point z = +∞ to α = 0 as in (19). Without
further relabeling we obtain

t̂bi(α) = 2 +
4

α
−

1

2 + 4
α
−

1

2 + 4
α
−

. . .

2 + 4
α
−

1

2 + 4
α

, t̂∞(α) = 1 +
2

α
+

2

α

√
1 + α.

Recalling (15), we have

{t̂∞}−1(α) :=
1

t̂∞(α)
= 1 +

2

α
− 2

α

√
1 + α, (28)

and using Theorem 3.2 part 3 we get

[i/i]t̂∞(α) =
1

[i+ 1/i]{t̂∞}−1(α)

for any i ≥ 1. By a direct computation we obtain

{t̂∞}−1(α) = 1 +
2

α
− 2

α

√
1 + α = 1− 2

1

α

(√
1 + α− 1

)
,

and hence by the Padé approximant calculus (see Theorem 3.2 parts 1 and 2) we obtain

[i/i]{t̂∞}−1(α) = 1− 2
1

α

(
[i+ 1/i]√1+α(α)− 1

)
.

Using the continued fraction representation from Theorem 3.5, we obtain

[i/i]{t̂∞}−1(α) = 1− 2

α

(
1 + 1 +

A2i+1(α)

B2i+1(α)
− 1

)
= 1− 2

α

α
2

1 +
α
2

2 +
α
2

1 +
α
2

b2i−1 +

. . .

b2i +
a2i+1

b2i+1

,

where the sequences {aj}j, {bj}j are given as in Theorem 3.5 and A2i+1(α)/B2i+1(α) is the
(2i+ 1)-st truncation of the continued fraction τ(α) from Lemma 3.6. Hence we have

[i/i]{t̂∞}−1(α) = 1−
1

1 +
α
2

2 +
α
2

1 +
α
2

b2i−1 +

. . .

b2i + a2i+1

b2i+1

, (29)
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and by a straight-forward manipulation (see Proposition 3.7) we observe that the continued
fraction on the right-hand side in (29) is the (2i+ 1)-st truncation of the continued fraction

τ̃(α) :=
1

1 + τ(α)
.

Finally, Proposition 3.7 gives a J-fraction representation of the continued fraction τ̃ and its
(2i+ 1)-st truncation denoted by C̃i(α)/D̃i(α), namely

[i/i]{t̂∞}−1(α) = 1−

(
1− C̃n(α)

D̃n(α)

)
=

1

2 + 4
α
−

1

2 + 4
α
−

1

2 + 4
α
−

. . .

2 + 4
α
−

1

2 + 4
α︸ ︷︷ ︸

i−1 “levels”

.

As a result, we get that for any i ≥ 1

[i/i]t̂∞(α) =
1
1

2+ 4
α
− 1

2+ 4
α−

1

2+ 4
α−

. . .

2+ 4
α−

1

2+ 4
α

= 2 +
4

α
− 1

2 + 4
α
− 1

2+ 4
α
− 1

2+ 4
α−

. . .

2+ 4
α−

1

2+ 4
α︸ ︷︷ ︸

i−1 “levels”

finishing the proof. �

Defining the approximation error6 by

errD(z, i) :=
∣∣t̂∞(z)− t̂bi(z)

∣∣ ,
where i denotes the number of grid columns that were folded into the Schur complement,
we are interested in the values for z = zk as in (10), for which

zk ∈
[
ηh2 + 4 sin2

(
π

2

1

N + 1

)
, ηh2 + 4 sin2

(
π

2

N

N + 1

)]
≈
[
ηh2, ηh2 + 4

]
. (30)

This seems to not agree with Theorem 3.8 where we operate with the expansion point
z = +∞, which is far away from the domain of zk. We address this in the following remark.

Remark 4 The gap between Theorem 3.8 and (30) can be bridged by returning to the defi-
nition of the matrices A? in (4) and D in (5), where the 1/h2 factor was intentionally put
in front of the matrix. Algebraically, this is sensible and made many calculations easier to

6The subscript D stands for the “Dirichlet” boundary condition at the end point x = b.
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Figure 2: Plots of the function errD(z, i) at the points zk with the parameters set to N = 20
and η = 2. The value i corresponds to the number of grid columns in Ωb \Ωa.

navigate. Including the 1/h2 factor in the blocks and defining D̃ := 1/h2D as the diagonal
blocks in (4) leads to rescaling of (30) so that the expansion point +∞ asymptotically be-
comes the right endpoint of the bounding interval of zk, i.e., 4/h2 → +∞ as h→ 0, see [20,
Chapter 6 and Appendix B.6] for more details. We choose not to rescale now but all the fol-
lowing results should be viewed with this interpretation of Theorem 3.8 and the interval (30)
in mind.

We plot the error errD for small i in and appropriate z in Figure 2. We see that errD(z, i)
quickly decreases as z tends towards the right endpoint of the spectrum, which is to be
understood as the expansion point. This becomes more pronounced for larger i, i.e., for
higher order Padé approximations, i.e., when b increases. We see that the error is still large
for z far away from the right endpoint, i.e., the ABC struggles with the low frequency mode
approximation. We try improving this7 in the next section by considering a Robin boundary
condition at the end of the truncation layer, x = b.

4 Robin boundary condition for truncation

We see that the Padé approximation error is far from optimal. Replacing the Dirichlet
boundary condition at x = b with a homogeneous Robin boundary condition8 with the

7In practice, the low frequency modes can be also solved by coupling our ABC with some effective low-
frequency solver, e.g., some type of multigrid or multilevel DD scheme. However the focus here is to efficiently
improve the ABC itself.

8A Robin boundary condition is a simple approximation to the transparent boundary condition and works
in general substantially better; for subdomain truncation in domain decomposition see [8] and [11].
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Robin parameter p ≥ 0 at b, i.e., with

∂u

∂n
+ pu = 0 at x = b,

we hope to improve this. Using a centered finite difference approximation as before, the
Robin condition can be discretized with the so-called ghost point trick. We use a centered
discretization of the Robin condition,

uNb+1 − uNb−1

2h
+ puNb = 0, i.e., uNb+1 = uNb−1 − 2phuNb ,

and then use the discretized equation at b, −uNb+1 +DNbuNb −uNb−1 = 0 to eliminate the
unknowns uNb+1 – the ghost points – to get (DNb + 2hpI)uNb − 2uNb−1 = 0. Hence the new
system matrix denoted by Āb becomes

Āb :=
1

h2



D1 −I

−I
. . .

. . .
. . . DNa −I

−I DNa+1

. . .
. . .

. . . −I
−I D̄Nb


(31)

with D̄Nb := 1
2

(DNb + (2ph)I). This also modifies the Schur complement, yielding

T̄ bNb =
1

2
D̄Nb and T̄Nb−i = D −

(
T̄ bNb−i+1

)−1
, for i = 1, . . . , N b −Na. (32)

After diagonalization we adopt the natural notation analogous to (11) and obtain

t̄b0(z) = 1 + ph+
z

2
, t̄b1(z) = 2 + z − 1

1 + ph+ z
2

, t̄b2(z) = 2 + z − 1

2 + z − 1
1+ph+ z

2

,

and by the recursive definition in (32) it follows that

t̃bi(z) = 2 + z − 1

2 + z − 1
. . .

2+z− 1
1+ph+ z2

. (33)

Notice that if p→ +∞ we recover the original Dirichlet boundary condition with one less
level of the continued fraction, i.e., corresponding to the physical domain (b, b+ h)× (0, 1).
With (33), we can numerically explore the effect of the Robin parameter p on the behavior
of the error9

errR(z, i) :=
∣∣t̂∞(z)− t̄bi(z)

∣∣ ,
17
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Figure 3: Left: plots of errR(z, i) at the points zk (see (10)) evaluated for different number of
grid columns i in Ωb \Ωa, with p = 50, N = 70 and η = 2. Right: plots of the same functions
under the same settings but zoomed in on the cusp (and thus plotted over artificial variables
z rather then the eigenvalues zk). In addition we also show the error errP from Section 5.

and we illustrate this in Figure 3.
We see that the behavior around the right endpoint of the interval is analogous to the

one in Figure 2 but the Robin condition introduced a new point ζp around which the ap-
proximation is accurate, e.g., in Figure 3 we see that ζp ≈ 0.46. Assuming ζp is a solution
of

errR(z, i) = 0, (34)

and that errR(z, i) is smooth except at a finite number of points, equation (34) defines ζp as
an implicit function of p and the other parameters of the problem. For i = 1 we get

errR(z, i) =

(
1 +

z

2

(
1 +

√
1 +

4

z

))
− 1 + ph+

z

2
=
z

2

√
1 +

4

z
− ph,

which gives ζp as the positive root of the quadratic equation

ζ2
p + 4ζp − 4p2h2 = 0 =⇒ ζp = −2 + 2

√
1 + p2h2. (35)

Numerically, this formula worked for all different settings we have tried and, e.g., the nu-
merical independence of ζp on i is already visible on the example in Figure 3.

Next, we try numerically to optimize p so that the infinity norm of errR(z) is minimized,
i.e., we search for p that equioscillates the maximum of errR(z) on the left and on the right
of ζp, and show the results in Figure 4. The relative improvement in the infinity norm of
replacing the Dirichlet condition with the Robin one for that setting is roughly 5 fold.

9The subscript R stands for the “Robin” boundary condition at the end point x = b.
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Figure 4: Left: minimization over p of the infinity norm of the Robin condition error,
clearly showing the equioscillation. Right: optimized error compared with the corresponding
Dirichlet condition error. We set N = 200, i = 4 and η = 2 and note that instead of zk
from (10) we take logarithmically equidistant z from the interval (30).

Running the optimization while varying i, i.e., the number of grid columns from a to b,
we obtain Table 1, again for N = 200 and η = 2. We see that the improvement over the
Dirichlet truncation increases with increasing number of layers. The corresponding results
over a larger range of i are shown graphically in Figure 5.

In Figure 5 we varied i as powers of 2 from 21 = 2 to 28 = 256 on the left and then up
to 215 on the right and observe a linear dependence in the log-log scale on the left, i.e., for
values i ≤ 256, and fitting the line gives the law

p∗(i) ∼ C · iq, with C ≈ 11, q ≈ −1. (36)

The range i ≤ 256 (and hence also the approximation (36)) in our eyes well covers the
practically interesting values of i but it is clear that in general p∗(i) does not follow the
proposed relation (36).

Although the change and optimization of the Robin condition at x = b offers a con-
siderable improvement over the Dirichlet condition, we still observe for both of these the
qualitatively identical behavior for z around the right endpoint of the spectrum. Naturally,
we would like to shift this expansion, i.e., move the zero of the error from the right endpoint
of the spectrum inside, and analogously to finding p∗ and ζp we would like to get the optimal
expansion point that minimizes the maximum of the approximation error. We explore this
direction further in the following section.
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i p∗(i) ‖errD‖∞
‖errR‖∞

1 27.4013 2.569

2 13.7783 3.924

4 8.2295 5.167

8 5.6016 6.598

16 4.3271 8.940

Table 1: Evolution of the optimized
Robin parameter p∗(i) depending on
the number of layers i and the im-
provement ratio from the Dirichlet
condition error to the Robin condition
error in the infinity norm.

i optimal z0
‖errD‖∞
‖errP ‖∞

‖errR‖∞
‖errP ‖∞

1 0.4356 3.691 1.441

2 0.2101 10.091 2.572

4 0.1409 18.446 3.569

8 0.0932 86.163 13.058

16 0.0680 3595.822 402.186

Table 2: Evolution of the optimized
expansion point z0 depending on the
number of layers i and the improve-
ment ratio from the Dirichlet and
Robin boundary condition error to the
error of the approximation t̆iz0 .
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Figure 5: Dependence of the optimized Robin parameter p∗(i) on the number of layers i
added after a compared with the predicted behavior. The value i corresponds to the number
of grid columns in Ωb \Ωa.
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5 Shifting the Padé expansion point

Taking some α0 > 0 and introducing the new variable

α̃ :=
α− α0

1 + α0

and hence α(α̃) = α̃ · (1 + α0) + α0, (37)

a direct computation gives √
1 + α =

√
1 + α0

√
1 + α̃,

and expanding the right-hand side about 0 then corresponds to expanding the left-hand side
about α0. Using Theorem 3.5, Lemma 3.6 and Proposition 3.7 we get

√
1 + α =

√
1 + α0

1 +
α̃
2

1 +
α̃
2

2+
α̃
2

1+
α̃
2

2+...

 =
√

1 + α0

(
1 +

α̃

2

(
1− 1

2 + 4
α̃
− 1

2+ 4
α̃
−...

))
.

Notice that the equality is valid only for the formal, infinite continued fraction and once we
truncate, the correspondence follows from Proposition 3.7. Setting t̆∞α0

(α̃) := t̂∞ (z(α(α̃)))
we get

t̆∞α0
(α̃) = 1 + 2

α̃(1+α0)+α0

(
1 +

(
1 + α̃

2

)√
1 + α0

)
− 2

α̃(1+α0)+α0
·
√

1 + α0 · α̃2 ·
1

2+ 4
α̃
− 1

2+ 4
α̃−...

,

and based on Theorem 3.8 the truncation after i levels of t̆∞α0
results in the [i+ 1, i+ 1]-Padé

approximant of t̂∞ about α0. We define t̆iα0
(α̃) as

t̆iα0
(α̃) := 1 + 2

α̃(1+α0)+α0

(
1 +

(
1 + α̃

2

)√
1 + α0

)
− α̃

α̃(1+α0)+α0
·
√

1 + α0 ·
1

2 + 4
α̃
−

. . .

2+ 4
α̃︸ ︷︷ ︸

i “levels”

,

and continue by focusing on the formulation of t̆iα0
as a function of z rather than α̃. Recalling

the definition of α̃ in (37) we have10

z =
4

α
=

4

α̃(1 + 4
z0

) + 4
z0

,

which leads to

α̃ =
4 z0
z
− 4

4 + z0

and hence
4

α̃
=

4 + z0
z0
z
− 1

.

10Note that we used zk above as the points of interest for the variable z for k = 1, . . . , N . In contrast to
that, here we use z0 := 4/α0 as the shifted expansion point of the Padé approximation, i.e., as the zero point
of the corresponding approximation error of t̂∞. Thus the meaning of z0 is qualitatively different compared
to z1, . . . , zN .
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Figure 6: Plots of the function errP (z, i) at points equally spaced in the interval [0, 4]
evaluated for different values of i, for α0 = 4 (and thus z0 = 1), N = 70 and η = 2. The
value i corresponds to the number of grid columns in Ωb \Ωa.

Without relabeling11 the function we can write

t̆iz0(z) = 1 +
z

2

(
1 +

(
1 + 2

z0
z
− 1

4 + z0

)√
1 +

4

z0

)
−

(
1

1+ 4
z0

− z
4

4
z0

1+ 4
z0

)√
1 + 4

z0

2 + 4+z0
z0
z
−1
−

1

. . .

2 + 4+z0
z0
z
−1
− 1

2+
4+z0
z0
z −1︸ ︷︷ ︸

i “levels”

,

(38)

and thereby define the error function errP (z, i) (P for Padé) by

errP (z, i) :=
∣∣t̂∞(z)− t̆iz0(z)

∣∣ .
The expectation is that the error function errP (z, i) should have one root at z0 = 4/α0,
which should get numerically more pronounced as i increases, in contrast to errR(z, i), and
indeed, this is fully supported by the numerical results which we show in Figure 6.

Again, we turn our attention to finding the optimal z0, i.e., such that the error equioscilates
on the left and on the right of z0 and we present the results first in Figure 4, observing an
18-fold improvement over the Dirichlet case and hence roughly 3-fold improvement over the
Robin case. The improvements become even more pronounced when increasing i as we show
in Table 2. Finally, in Figure 7 we plot the evolution of the optimal z0 as a function of i. We

11Meant in the spirit of (20). We signal the variable by the expansion point in subscript from α0 to z0.
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Figure 7: Dependence of the optimal choice of z0 (and consequently α0 = 4/z0) on the
number of layers i added after a. We used again N = 70 and η = 2.

can see that for i ≤ 64 there seems to be a trajectory for the optimal choice of z0, possibly
convergent. But for i around 80 the error function becomes numerically equal to zero on the
entire interval (10) and thus the optimization routine converges very close to or exactly at
the initial guess, which was taken as 1.

We conclude this section by linking the above proposed approximation back to the phys-
ical problem and its solution methods by introducing a new PML technique that stems from
the above approximation. Recalling the progress from (8) and (7) to (11), we need to move
now in the opposite direction, starting with (38) and working up to the new block matrix
we will call Ăb.

Notice that t̆iz0(z) is structurally similar to t̄bi(z), containing structurally identical J-
fractions. The first difference is in the absolute term added to the J-fractions and the
second is the multiplicative factor in t̆iz0(z) in front of the J-fraction (which is not present
in t̄bi(z)). By construction, these leads us to

Ăb =
1

h2



D1 −I

−I
. . .

. . .
. . . D̆Na −J

−I D̆Na+1

. . .
. . .

. . . −I
−I D̆Nc


, (39)

where we need to pay extra attention to the blocks D̆Na and J in the Na-th block row – the
blocks corresponding to the mentioned differences. Recalling (10), we denote the eigenvalues
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of Dyy by µk,
zk := ηh2 + µk,

and the point z0 now translates to some µ0. The denominator of the cyclic part of the
continued fraction t̆iz0 in (38) evaluated at the points zk becomes

2 +
4 + z0
z0
zk
− 1

= 2 + zk
4 + z0

z0 − zk
= 2 +

(
ηh2 + µk

) 4 + ηh2 + µk
µ0 − µk

,

and thereby for any i = 0, · · · , N b − (Na + 1) we have D̆Nb−i = D̆ 6= D̆Na with

D̆i = QT

2 + z1
4+z0
µ0−µ1

. . .

2 + zNr−1
4+z0

µ0−µNr−1

Q

= 2I + (4 + ηh2 + µ0)(D − 2I)(µ0I −Dyy)
−1,

(40)

where Q is given in (10) and D is the diagonal block of the original problem, see (5). Focusing
on the Na-th block row, we obtain

1 +
z

2

(
1 +

(
1 + 2

z0
z
− 1

4 + z0

)√
1 +

4

z0

)
= 1 +

z

2
+ z

√
1

4
+

1

z0

+
z0 − z
4 + z0

√
1 +

4

z0

for the absolute term, and the multiplicative terms reads(
1

1 + 4
z0

− z 1

z0 + 4

)√
1 +

4

z0

.

Hence, we set the diagonal block as

D̆Na := QT


1 + z1

2
+ z1

√
1
4

+ 1
z0

+ µ0−µ1
z0+4

√
1 + 4

z0

. . .

1 + zN
2

+ zNr−1

√
1
4

+ 1
z0

+
µ0−µNr−1

z0+4

√
1 + 4

z0

Q

=
1

2
D +

√
1

4
+

1

z0

(D − 2I) +

√
1 + 4

z0

z0 + 4
(µ0I −Dyy),

and the off-diagonal block then reads

J =

√
1 + 4

z0

1 + 4
z0

I − 1

z0 + 4
(D − 2I).

We finish this section with the following remark.
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Remark 5 The formula (39) contains an explicit inverse, which is clearly unpractical but
can be easily avoided by multiplying the block-rows Na + 1, . . . , N b − 1, N b in (39) by the
matrix M := µ0I −Dyy, which leads to

1

h2



D1 −I

−I
. . .

. . .
. . . D̆Na −J

−M D̆Na+1M
.. .

. . .
. . . −M
−M D̆NbM


,

where no inverse of a matrix appears. An overall deeper understanding of Ăb and its contin-
uous counterpart are clearly of interest and will be discussed in future work.

6 Conclusion and future work

We proved for a model problem that truncation of the unbounded computational domain by
a Dirichlet boundary condition at a certain distance from the domain of interest, is a spectral
Padé approximation about infinity of the transparent boundary condition at the boundary
of the domain of interest and that the degree of the Padé approximation increases with
the distance. We then replaced the Dirichlet truncation condition by a Robin truncation
condition at the end of the truncation layer, and showed that this considerably improves the
behavior around a different point in the spectrum but loses the above Padé approximation
property. We showed how to optimize the Robin parameter leading to an equioscillation
property. In search to obtain a Padé approximation about a different point in the spectrum,
we then proposed a new approximant in the eigenspace (leading to a new PML/ABC method
for this problem), with much better truncation properties than the Robin truncation. In
order to keep the exposition self-contained and of reasonable length we postponed the further
results on the value of the optimal Robin parameter as well as the approximation properties
of the new PML/ABC method (and the optimal choice of the expansion point) to a new
upcoming manuscript, where we aim to lay out these in detail, making proper use of the
theory of continued fractions.

Recognizing we worked with a very particular problem, there are some straightforward
generalizations. First, none of the computations required the particular choice of D in (5).
As long as D is symmetric and positive-definite, all of the computations still work and the
only change is in the interval of interest for the minimization of the Robin parameter p
and the shifted expansion point z0 in Section 4 and Section 5. This even holds if D is
only symmetric, non-singular and with eigenvalues outside the interval (−∞,−1]. If the
spectrum intersects the interval (−∞,−1], the square root becomes a complex number and
the computations move to the complex plane – in fact this is true for any diagonalizable
non-singular normal matrix D. The Helmholtz problem is the canonical example and in fact
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a very similar technique was used to establish a result related to Theorem 3.8 in [13]. If D is
not normal, then the eigenvectors cannot be chosen to form an orthonormal basis of RN (or
CN) but the formulas would follow (based on the spectrum) one of the above mentioned cases
in the same way, but one could not use the results directly. For example, the improvement
factor would not be of immediate interest as the condition number of the eigenbasis would
play an important role in computing the optimized Robin parameter p. If the matrix is
diagonalizable and singular, then the modes corresponding to the zero eigenvalues do not
admit the formulation of the function t̂bi(z) as in (17) but the analysis would work for the
rest of the modes, based on the normality and spectrum of the matrix. In the case that the
matrix is not diagonalizable, it is not immediately clear how to generalize any of the results
based on the available Jordan form.
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[21] H. A. Schwarz. Über einen Grenzübergang durch alternierendes Verfahren. Viertel-
jahrsschrift der Naturforschenden Gesellschaft in Zürich, 15:272–286, 1870.
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