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Abstract. We analyze the recently introduced family of preconditioners in [23] for the stage4
equations of implicit Runge-Kutta methods for s-stage methods. We simplify the formulas for the5
eigenvalues and eigenvectors of the preconditioned systems for a general s-stage method and use6
these to obtain convergence rate estimates for preconditioned GMRES for some common choices of7
the implicit Runge-Kutta methods. This analysis is based on understanding the inherent matrix8
structure of these problems and exploiting it to qualitatively predict and explain the main observed9
features of the GMRES convergence behavior, using tools from approximation and potential theory10
based on Schwarz-Christoffel maps for curves and close, connected domains in the complex plane.11
We illustrate our analysis with numerical experiments showing very close correspondence of the12
estimates and the observed behavior, suggesting the analysis reliably captures the essence of these13
preconditioners.14
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1. Introduction. Runge-Kutta methods are a well-established family of one-18

step solvers for systems of ordinary differential equations (ODEs; see [31, 30] for an19

overview and further references). For implicit methods (IRK), their efficiency depends20

on the efficiency of a solver for the so-called stage equations – in general a system21

of ms non-linear equations, where m is the number of scalar ODEs in the system22

and s is the number of stages of the Runge-Kutta method. An important application23

arises from the space discretization of time-dependent partial differential equations24

(PDEs), resulting in a system of ODEs with very large m. If the spatial operator is25

linear, then the stage equations also form a system of linear algebraic equations and26

are often solved by an iterative solver, e.g., a Krylov method. In [23], the authors27

introduced a family of preconditioners for GMRES for the stage equations, numerically28

showing that these preconditioners give an outstanding performance, especially under29

refinement of the spatial mesh, i.e., as m grows. Recently, there have also been other30

contributions in the direction of preconditioning the fully implicit Runge-Kutta stage31

equations for PDEs, see [27, 26] but also [20, 19] and [3], introducing new ideas in32

terms of implementation as well as formulation and testing these numerically on a33

variety of test problems.34

We focus on the setting considered in [23], expand the 2-stage method analysis35

given in [10], and consider the general s-stage case, giving a theoretical background for36

the performance and spectral properties observed. Using the classical ideal GMRES37

bound we use the structural properties of the stage equations to obtain computable38

expressions for the spectrum. These then justify the use of estimates based on con-39

formal mapping theory (see [5]) of the ideal GMRES bound and ultimately lead to40

descriptive estimates for GMRES convergence properties for the preconditioned sys-41

tems.42
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2 M. J. GANDER AND M. OUTRATA

First, we recall some important preliminaries in Section 2 so that we can deliver43

the analysis, based on the spectral analysis of the preconditioned system, in Section 3.44

We support the analysis by considering more involved examples in Section 4.45

2. Model problem and preliminaries. The analysis in this paper applies46

to any spatial discretizations of ∂tu = Lu + f with a diffusive elliptic operator L47

that leads to a symmetric definite problem (the main assumptions being (3.6) in48

Section 3). However, in order to facilitate the understanding and put the emphasis on49

the preconditioners and their performance we choose for its exposition the simplest50

concrete problem and its discretization – the heat equation. We thus consider the51

heat equation on the unit square and a time interval (0, Tend), i.e.,52

(2.1)

∂

∂t
u = ∆u+ f in Ω× (0, Tend),

u = g on ∂Ω× (0, Tend) and u = u0 in Ω× {0},
53

where ∆ is the Laplace operator, f, g, u0 are given functions and Ω is the unit square54

Ω := (0, 1) × (0, 1). As in [10] we discretize in space using a finite difference scheme55

on an equidistant grid with N + 1 rows and columns, and with mesh size h = 1/N .56

The values at the interior grid points become unknown functions of time, which are57

governed by the system of ODEs58

(2.2)
∂

∂t
ui(t) =

ui−N (t) + ui−1(t)− 4ui(t) + ui+1(t) + ui+N (t)

h2
+ b

(ST )
i (t),59

for i = N + 1, . . . , N(N − 1) − 1, where b
(ST)
i (t) collects the known values from the60

source terms, given by g and f , at the given point. Combining the unknowns in each61

grid column into one vector denoted by uk(t), i.e.,62

uk(t) :=
[
uNk+2 uNk+3 · · · uN(k+1)−1

]T
(t), u(t) :=

[
uT
1 (t) · · · uT

N−1(t)
]T

,63

and also analogously for bk(t) and b(t), we rewrite (2.2) as64

(2.3)
∂

∂t
u(t) =

1

h2
Lu(t) + b(ST)(t),65

with66

(2.4)

L =


T I

I
. . .

. . .

. . .
. . . I
I T

 , T =


−4 1

1
. . .

. . .

. . .
. . . 1
1 −4

 , I =


1

. . .

. . .

1

 ,67

where L is of dimension n := (N − 1)2 and the blocks T, I are of dimension N − 1.68

We discretize [0, Tend] with MTend
+ 1 equidistant time points with time step τ =69

Tend/MTend
, i.e.,70

{0 = t0 < · · · < tMTend
= Tend}, τ =

Tend

MTend

and tm = τ ·m, m = 0, . . . ,MTend
.71
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SPECTRAL ANAL. OF IMPLICIT S-STAGE BLOCK RUNGE-KUTTA PREC. 3

Having a Butcher tableau72

(2.5)
c A

b
:=

c1 a1,1 . . . a1,s
...

...
. . .

...

cs as,1 . . . as,s

b1 . . . bs

,73

the corresponding IRK method applied to (2.3) at the m-th time step gives the ap-74

proximation um ≈ u(tm) as75

(2.6) um = um−1 + τ

s∑
i=1

bik
m
i ,76

where the vectors km
1 , . . . ,km

s ∈ Rn are the solutions of the linear system77

(2.7)


I . . .

I

− τ
h2

a1,1L . . . a1,sL
...

. . .
...

as,1L . . . as,sL


km =


1
h2Lu

m−1 + b(ST)(tm−1 + c1τ)
...

1
h2Lu

m−1 + b(ST)(tm−1 + csτ)

 ,78

with79

km :=
[
km
1 · · · km

s

]T ∈ Rns.80

Using the Kronecker product formulation (denoted by ⊗; see [29] and references81

therein), (2.7) becomes82

(2.8)
(
Is ⊗ In − τ

h2
(A⊗ L)

)
︸ ︷︷ ︸

=:M

km =


1
h2Lu

m−1 + b(ST)(tm−1 + c1τ)
...

1
h2Lu

m−1 + b(ST)(tm−1 + csτ)

 .83

We note that (2.8) can be reformulated into a matrix equation, which is in general84

better suited for using a Krylov solver (see [22]). Here we focus on the analysis of85

the results in [23] and thus we do not address this any further but a study of the86

preconditioners from [23] in the matrix equations setting seems worthwhile. Having87

p ≤ 2s as the order of convergence of the IRK method we assume that it is balanced88

with the spatial discretization error, i.e., that h2 = Ceτ
p for some Ce > 0.89

The problem (2.8) with the sparse system matrix M can be very large for h (and90

τ) small, suggesting an iterative solver such as GMRES, BiCG or GCR should be91

used, which in turn requires a preconditioner to attain efficiency. In [23], the authors92

introduce the block preconditioners93

(2.9)
P d = Is ⊗ In − τ

h2
diag(A)⊗ L,

P u = Is ⊗ In − τ

h2
DAUA ⊗ L and P l = Is ⊗ In − τ

h2
LADA ⊗ L,

94

where LA, DA, UA are the LDU factors of the Butcher tableau matrix A. In addition,95

the authors also consider the block triangular preconditioners96

(2.10) PGSL = Is ⊗ In − τ

h2
AL ⊗ L and PGSU = Is ⊗ In − τ

h2
AU ⊗ L,97
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4 M. J. GANDER AND M. OUTRATA

where GSL/GSU stands for Gauss-Seidel lower/upper, and AL,U is the lower/upper98

triangular part of A, i.e.,99

(AL)ij =

{
aij if i ≥ j

0 otherwise
, (AU )ij =

{
aij if i ≤ j

0 otherwise
.100

Some of these – P d and PGSL – were considered already in [28]. Notice that if aii > 0101

for all i = 1, . . . , s, then the preconditioners are invertible as L is symmetric, negative-102

definite. More general conditions for non-singularity of the preconditioners can be also103

derived analogously to [27, Lemma 1].104

Using GMRES for a linear system Cx = f with C being diagonalizable, i.e.,105

C = SΛS−1 and Λ = diag(λ1, . . . , λd), a standard convergence bound for the residuals106

rℓ reads107

(2.11)
∥rℓ∥
∥r0∥

≤ κ(S) min
φ(0)=1

deg(φ)≤ℓ

max
1≤i≤d

|φ(λi)|,108

where κ(S) is the 2-norm condition number of the matrix S, see, e.g., [18, Section109

5.7.2]. We highlight some aspects of the bound (2.11) that are often used to study110

GMRES convergence behavior.111

Remark 2.1. As indicated above, the spectral information of the system matrix112

in GMRES (in our case of the preconditioned system) does not generally govern the113

convergence (see [12], [11] and [1] and also [18, Chapter 2 and 5.7] and the references114

therein). If the system matrix is normal, i.e., it is diagonalizable with S unitary,115

then the spectral information is enough to evaluate the ideal GMRES bound (2.11).116

However, if C is non-normal, then a convincing argument needs to be put forward to117

validate linking spectral information with the convergence behavior of GMRES as the118

authors in [18, p. 303, Remark 1] point out.119

Moreover, particular knowledge of the interaction of S and the initial residual r0120

can lead to a qualitative and quantitative improvement on (2.11), see, e.g., [17]. How-121

ever, studying GMRES behavior with the bound (2.11), this interaction is completely122

lost.123

In cases where (2.11) is justifiable, the next step is usually to bound from above124

the mixed1 min-max problem in the right-hand side of (2.11) by replacing the discrete125

set over which we take the maximum, let us denote it by σdiscr, by a non-discrete one,126

which we denote by σnon−discr, so that we have σdiscr ⊂ σnon−discr. We highlight two127

important aspects of this step:128

(a) It is functional only if we can further bound or evaluate the solution of the129

min-max problem over σnon−discr and obtain a reasonably fast convergence130

estimate.131

(b) It is appropriate only if2 ∂Cσ
non−discr is reasonably uniformly covered by132

σdiscr.3 In case of clusters, we should consider having σnon−discr as a union133

1Mixed in the sense that the minimum is over a non-discrete set while the maximum is over a
discrete one.

2We denote the boundary of a set S ⊂ C in C by ∂CS.
3Intuitively, we could expect that the bound will be appropriate only if σdiscr covers the entirety

of σnon−discr but because polynomials of complex variables are harmonic we can conclude that the
maximum of the modulus of a polynomial over the set σnon−discr is attained along ∂Cσ

non−discr and
therefore only the relation of ∂Cσ

non−discr and σdiscr is important for the GMRES bound, see [5,
Section 2].
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of separate non-discrete sets σnon−discr
i each of which captures one of the134

clusters, i.e., is covered by one of the clusters reasonably uniformly.135

For example, in (2.11) we can replace the spectrum σdiscr = {λ1, . . . , λd} by a disc136

containing all of the eigenvalues σnon−discr = {z ∈ C | |z − c| ≤ η}. Assuming |c| > η,137

a crude but sometimes useful approximation of the original bound is available,138

(2.12)
∥rℓ∥
∥r0∥

≤ κ(S)

(
η

|c|

)k

,139

see [25, Section 6.11.2, Corollary 6.33 and Lemma 6.26 and below]. Here, σnon−discr =140

{z ∈ C | |z − c| ≤ η} was clearly chosen with the functionality aspect in mind as we141

know the polynomial that realizes the bound (see [25, Lemma 6.26]) and it gives142

a good convergence bound as long as η ̸≈ |c|. However, it is usually far from being143

appropriate if the eigenvalues don’t spread uniformly over the circle bounding the disc.144

One notable exception is the case of tightly clustered eigenvalues around a single point145

c – in this case the clustering usually makes this bound appropriate as we can choose η146

very small. We emphasize that the adjectives functional and appropriate make sense147

only if the original bound (2.11) was itself descriptive of the GMRES convergence148

bound, i.e., only if the system matrix is either close to normal or the initial residual is149

restricted to a subspace on which the system matrix is not too far from being normal.150

3. Analysis of the block preconditioners. We start by transforming the151

calculations into the eigenbasis of the spatial operator. Denoting the eigenpairs of152

L by (λk,vk), we organize the eigenvectors into an n-by-n matrix V and define the153

block transformation matrix Q,154

(3.1) V := [v1, . . . ,vn] , and Q :=

V . . .

V

 ∈ Rsn×sn.155

Transforming M blockwise into the V basis gives M̃ := QMQT ,156

(3.2) M̃ =

I . . .

I

− τ

h2

a1,1Λ . . . a1,sΛ
...

. . .
...

as,1Λ . . . as,sΛ

 ,157

with Λ = diag(λ1, . . . , λn). With the preconditioners proposed in (2.9-2.10) we write158

the spectrum of the preconditioned system as159

sp(MP−1) = sp(QTMP−1Q) = sp(QTMQQTP−1Q) = sp
(
M̃P̃−1

)
,160

where P̃ := QTPQ stands for one of the right-preconditioners P d,GSU,u and an anal-161

ogous formulation follows also for the left-preconditioners PGSL,l. As the precondi-162

tioners are defined blockwise as scalar multiplications of L and I, their blockwise163

transformation into the eigenbasis of L is a straight-forward calculation - replacing L164

with Λ (and keeping I). Next, such matrices – block matrices with each block being165

a square, diagonal matrix – can be permuted into classical block-diagonal matrices as166

the following lemma shows.167

Lemma 3.1 (see [10, Lemma 1]). Let C ∈ Rns×ns be a real matrix with block168
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6 M. J. GANDER AND M. OUTRATA

structure such that every block is a square diagonal matrix, i.e.,169

(3.3) C =

Λ11 . . . Λ1s

...
. . .

...
Λs1 . . . Λss

 , with Λij = diag
(
λ
(ij)
1 , . . . , λ(ij)

n

)
∀ij.170

Then there exists a permutation matrix Π ∈ Rns×ns such that171

(3.4) ΠTCΠ =

C1

. . .

Cn

 with Cℓ =


λ
(11)
ℓ . . . λ

(1s)
ℓ

...
. . .

...

λ
(s1)
ℓ . . . λ

(ss)
ℓ

 ∈ Rs×s,172

for any ℓ = 1, . . . , n.173

Hence, C is diagonalizable if and only if Cℓ is diagonalizable for all ℓ = 1, . . . , n,174

and if Cℓ = V −1
ℓ DℓVℓ is the eigendecomposition of Cℓ with Dℓ = diag(µ

(1)
ℓ , . . . , µ

(s)
ℓ ),175

then176

sp(C) =

n⋃
ℓ=1

s⋃
i=1

µ
(i)
ℓ ,177

and if (µ,v) is an eigenpair of some Cℓ, then
(
µ,ΠT (v ⊗ eℓ)

)
is an eigenpair of C.178

As a result, if C is diagonalizable with C = V −1DV , then179

κ(V ) =

max
ℓ=1,...,n

σ
(ℓ)
1

min
ℓ=1,...,n

σ
(ℓ)
s

,180

where κ(·) is the 2-norm condition number and the matrices Vℓ have the singular181

values σ
(ℓ)
1 ≥ . . . ≥ σ

(ℓ)
s ≥ 0.182

Remark 3.2. We note that an analogous lemma to Lemma 3.1 can also be for-183

mulated for non-normal matrices (replacing QT by Q−1). Considering the Jordan184

canonical (or the Schur decomposition form) of Cℓ, Lemma 3.1 can be reformulated185

to obtain a block upper bi-diagonal (or block upper-triangular) matrix.186

We take W as the matrix of eigenvectors of L, and in order to shorten the notation187

we set188

(3.5) θk :=
τ

h2
λk and Θ :=

τ

h2
Λ,189

as these quantities always appear together in the computations, and we use p as the190

order of the Runge-Kutta scheme (see [31, Section II.1, Definition 1.2]). Assuming191

the time and space discretization errors are kept in balance, i.e., there exists a C so192

that h2 = Cτp, a direct calculation (see [21, Appendix B.8, pages 228–229]) leads us193

to the following limit behavior of θk as τ, h → 0:,194

(3.6)

(θn, θ1) → (− 8

Ce
, 0),

(θ−1
1 , θ−1

n ) →
(
−∞,−Ce

8

)
,︸ ︷︷ ︸

(LIM)p=1

(θn, θ1) → (−∞, 0),

(θ−1
1 , θ−1

n ) → (−∞, 0).︸ ︷︷ ︸
(LIM)p>1

195
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Next we define the s-by-s matrices196

Mk :=


1− a11θk −a12θk . . . −a1sθk

−a21θk 1− a22θk
...

...
. . .

...
−as1θk . . . . . . 1− assθk

 and P ⋆
k :=


1− α11θk −α12θk . . . −α1sθk

−α21θk 1− α22θk
...

...
. . .

...
−αs1θk . . . . . . 1− αssθk

 ,197

where αij are the entries of the replacement for A in M , e.g., taking ⋆ = d we have198

αij = aij for i = j and αij = 0 otherwise, while taking ⋆ = u we have αij = (DAUA)ij199

where A = LADAUA is the LDU factorization of A and so on. Using Lemma 3.1, we200

obtain the following result.201

Proposition 3.3. Take M as in (2.8) and a preconditioner P from (2.9, 2.10).202

Assuming P is invertible, the spectrum of MP−1 (or P−1M) is given as the union of203

the spectra of the matrices Xk given by204

(3.7) X⋆
k := Mk (P

⋆
k )

−1
(or (P ⋆

k )
−1

Mk),205

for k = 1, . . . , n. If all X⋆
k are diagonalizable with206

(3.8) (S⋆
k)

−1X⋆
kS

⋆
k = diag(ξ

(k)
1 , . . . , ξ(k)s ),207

then the condition number of the matrix of the eigenvectors of the preconditioned208

system is given by209

κ (W ) · max
k=1,...,n

κ (S⋆
k) .210

If the θk have multiplicity at most m, then the eigenvalues of the preconditioned system211

have algebraic multiplicity at most ms. In particular, the preconditioned system can212

be non-diagonalizable but the longest Jordan vector chain has length at most ms.213

Proof. Transforming MP−1 (or P−1M) into the basis of Q we use Lemma 3.1214

for the matrix M̃P̃−1 (see (3.2)) and obtain the result.215

Now we are ready to generalize the results shown in [10] for s = 2 to a general s-stage216

method.217

Corollary 3.4 ([21, Proposition 7.5]). Under the assumptions of Proposi-218

tion 3.3, we have for the right-preconditioner P d the formula219

(3.9) Xd
k =


1 − a12θk

1−a22θk
. . . − a1sθk

1−assθk

− a21θk
1−a11θk

1
...

...
. . .

...

− a1sθk
1−a11θk

. . . . . . 1

 ,220

with the characteristic polynomial221

p
(s)
k (λ) = (1− λ)s + βs−2(1− λ)s−2 + βs−3(1− λ)s−3 + . . .+ β1(1− λ) + β0,222

where βj are continuous functions of θk and aii for i = 1, . . . , s. Hence, the eigenvalues223

become 1− µ, where µ is a root of the parametrized polynomial224

p̃
(s)
k (t) = ts + βs−2t

s−2 + βs−3t
s−3 + . . .+ β1t+ β0.225
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8 M. J. GANDER AND M. OUTRATA

Corollary 3.5 ([21, Proposition 7.6]). Under the assumptions of Proposi-226

tion 3.3, the block upper-triangular preconditioners PGSU,u give227

(3.10)

XGSU,u
k =


1 0 . . . . . . . . . 0
⋆
...
⋆

(
Mk(P

GSU,u
k )−1

)
2:s,2:s

 , XGSL,l
k =


1 ⋆ . . . . . . . . . ⋆
0
...
0

(
(PGSL,l

k )−1Mk

)
2:s,2:s

 ,228

and hence have one eigenvalue equal to one for each k. The entries replaced by ⋆229

above do not affect the spectrum, only the eigenbasis.230

These results suggest 1 as a natural “central point” of the spectrum of the pre-231

conditioned system, generalizing the observations made for s = 2. We note that using232

these results we get both quantitative and qualitative insight into the spectra shown233

in [23, Figure 4.1 – 4.4], e.g., we see that for s = 3 the eigeninformation of M(P u)−1234

and (P l)−1M can still be obtained explicitly (see also [21, Section 7.4]) and on the235

other hand for s ≥ 6 there is no hope for these in general – but any bound on the236

eigeninformation of L can be used to obtain a bound on the eigeninformation of the237

preconditioned system by calculating with Xk, see [10, Section 4].238

We show the spectra of the preconditioned systems and the corresponding GM-239

RES convergence behavior in Figure 1 and 2, demonstrating observations and results240

from above. Notably, the bounds leave something to be desired, especially for P d241

where they are not descriptive at all. Moreover, increasing s seems to noticeably af-242

fect the quality of the preconditioners – see also [23] for further numerical tests with243

various s and h. These numerical examples (as well as the ones in [3, 10]) are, as244

far as we can tell, representative of the general experience with these preconditioners.245

We highlight several key features illustrated in Figures 1 and 2 that remained true in246

all of our experiments:247

1. For s small, we have observed the staircase-like convergence behavior visible248

in the left upper-most plot in Figure 2 (and also in the first row of Figure 5),249

where GMRES makes very little progress for a number of iterations, then250

improves notably in one iteration and repeats this cycle going forward. This251

behavior was most pronounced for the preconditioner P d, and for s = 2 was252

described and explained in [10, Figure 2 and below].253

2. We have usually not observed the desired superlinear convergence behavior,254

except for a speed-up after an initial stagnation (or slower speed convergence)255

phase.256

3. In the vast majority of cases, the number of GMRES iterations to reach a257

certain tolerance grows only very moderately under mesh refinement and for258

P u, P l it remains almost constant.259

4. In all of the experiments the spectra had the characteristic arc-like structure260

that we see in Figure 1.261

Our goal is to explain all these features here as well as to investigate other bounds262

or estimates that would be more descriptive of the convergence behavior. This insight263

is of clear interest on its own but can be also used to further improve the used264

methods, e.g., looking at numerical optimization of the Butcher tableau in the spirit265

of [10, Section 4]. We also note that the above results translate in a straight-forward266

fashion to the transformed system after we multiply (2.8) with (A−1 ⊗ In) from the267
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Fig. 1. The spectra of the preconditioned systems M
(
Pu,d

)−1
and

(
P l

)−1
M for s = 4, 6, 8 and

for three classical choices of fully implicit Runge-Kutta schemes - Gauss, RadauIIA and LobattoIIIC.
The spectra seemingly assemble in s “branches” in the first row and into s − 1 “branches” in the
other two with a central point at 1 + 0i. We set N = 50.

left, obtaining268

(
A−1 ⊗ In − τ

h2
Is ⊗ L

)
︸ ︷︷ ︸

=:Mtransf

km = (A−1 ⊗ In)


1
h2Lu

m−1 + b(BC)(tm−1 + ciτ)
...

1
h2Lu

m−1 + b(BC)(tm−1 + ciτ)

 ,269

and getting analogously the preconditioners,270

Rd = diag
(
A−1

)
⊗ In − τ

h2
Is ⊗ L,

Rl = (DA−1UA−1)⊗ In − τ

h2
Is ⊗ L and Ru = (LA−1DA−1)⊗ In − τ

h2
Is ⊗ L,

RGSL =
(
A−1

)
L
⊗ In − τ

h2
Is ⊗ L and RGSU =

(
A−1

)
U
⊗ In − τ

h2
Is ⊗ L,

271

where A−1 has the LDU factorization A−1 = LA−1DA−1UA−1 and
(
A−1

)
L,U

are272

defined analogously to (2.10). These preconditioners were proposed in [20] and then273

used further in [19] but also [27, 26]. For a general Butcher tableau, it is not possible to274

say whether the preconditioned transformed system gives a better performance than275

the original one. However, in [27, 26] the authors propose different preconditioners276

and our analysis adapted to their framework is going to be considered elsewhere. Also,277

we note that the extension of the above analysis for FEM discretization is a straight-278

forward task – more details on both of these topics can be found in [21, Sections 7.6279

and 7.7].280

3.1. Spectral analysis. Next we turn to the spectral analysis, keeping in mind281

its limitation in the sense of Remark 2.1. For block-diagonal problems we obtain282

(3.11)
∥rℓ∥
∥r0∥

≤ min
φ(0)=1

deg(φ)≤ℓ

max
j=1,...,n

∥φ (Xj)∥ ,283
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Fig. 2. The preconditioned GMRES convergence behavior for the preconditioned systems

M
(
Pu,d

)−1
and

(
P l

)−1
M for s = 4, 6, 8 and three classical choices of fully implicit Runge-Kutta

schemes - Gauss, RadauIIA and LobattoIIIC – together with the GMRES bound (2.12) with c = 1
(we set the values to 1 if η ≥ 1). We set N = 50.

which was studied in [9], where the authors showed that the extremal polynomials284

(i.e., the polynomial realizing the above bound) satisfies the equioscillation property285

but only every s iterations, where s is the size of the diagonal blocks. Relabeling the286

blocks in (3.11) we get287

∥rℓ∥
∥r0∥

≤ min
φ(0)=1

deg(φ)≤ℓ

max
j=1,...,n

∥φ (Xj)∥ = min
φ(0)=1

deg(φ)≤ℓ

max
θj∈sp( τ

h2 L)

∥∥φ (
Xθj

)∥∥ .288

Assuming each Xθj is diagonalizable as in Proposition 3.3, we notice that {θj} covers289

reasonably well the intervals Ih,τ,... as h → 0 (see (3.6)) and, in the spirit of Section 2,290

the natural bound of (3.11) becomes291

∥rℓ∥
∥r0∥

≤ min
φ(0)=1

deg(φ)≤ℓ

max
θ∈Ih,τ,...

∥φ (Xθ)∥ .292

First, let us assume there is a uniform bound κ (Sθ) ≤ κS for all θ ∈ Ih,τ,..., which293

experimentally seems to be the case (see [21]) and can be confirmed analytically for294

s = 2, 3 (see [10]) – this is an important and non-trivial assumption and a proper jus-295

tification is an open problem. Next, we notice that the matrices Xθ depend smoothly4296

on θ and as a result so do their eigenproperties. In particular, the eigenvalues ξ
(i)
θ of297

Xθ will – by definition – form an algebraic curve5 with s arcs (sometimes also called298

branches) some of which can be degenerate, e.g., reduced to just a point (incidentally,299

4That is, for our model problem of the negative-definite Laplacian. However in most cases of
interest this assumption is also satisfied, partially due to the stability assumptions/conditions coming
from the Runge-Kutta scheme.

5We say that Γ is an algebraic curve provided there exists a bi-variate polynomial p(θ, t) such
that Γ = {(θ, ξ) | p(θ, ξ) = 0}. Locally, this can also be viewed through the lens of perturbation
theory, see [14, Chapter 2 Section 1.1].
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this is the case for at least one arc of the algebraic curve for any of the triangular300

preconditioners due to Corollary 3.5). Denoting the algebraic curve for the given301

Butcher tableau A and a choice of preconditioner P ⋆ by Γ, we obtain302

(3.12)
∥rℓ∥
∥r0∥

≤ min
φ(0)=1

deg(φ)≤ℓ

max
θ∈Ih,τ,...

κ (Sθ) max
i=1,...,s

∣∣∣φ(
ξ
(i)
θ

)∣∣∣ ≤ κS min
φ(0)=1

deg(φ)≤ℓ

max
ξ∈Γ

|φ (ξ)| .303

Notice that if we replace in (3.12) the interval Ih,τ,... with its limit Ilim as h, τ → 0304

(see (3.6)), we obtain a bound for all mesh sizes. Noticing that, in our case, the305

preconditioned system matrix has a limit as θ tends to either of the endpoints of306

Ilim, it follows that the arcs of the corresponding algebraic curve correspond to the307

eigenvalues of these limit matrices. Hence, the effect of mesh refinement becomes308

sampling more points along Γ and stretching it towards these fixed endpoints (and309

possibly in increasing κS). This suggests that from a certain mesh size onward, the310

mesh refinement will have little effect on Γ and hence will not affect the min-max part311

of (3.12), shedding some light on why these preconditioners are quite robust under312

mesh refinement.313

Remark 3.6. Note that the numerical experiments in [23, 3] as well as in [21]314

and in Section 4 clearly show that the spectra of the preconditioned systems cover315

reasonably well an algebraic curve. For two-stage methods, this behavior has been316

observed, proved and used to obtain descriptive GMRES bounds in [10]. Moreover,317

for any algebraic curve Γ we have Γ = ∂CΓ, which is convenient from the point of318

view of choosing σnon−discr, see Remark 2.1 and below.319

We also emphasize that, in general, these preconditioners do not cluster eigenval-320

ues (that is, any more than the θ ∈ Ih,τ,... already are) but rather place them along321

a particular algebraic curve Γ ⊂ C. Hence, if the conditioning of the eigenbasis is322

not very bad, we can reasonably expect linear convergence as opposed to superlinear,323

which can often be linked with clusters and numbers of outliers, in the sense of [18,324

Section 5.6.4].325

Remark 3.6 also explains that the bound (2.12) is unlikely to be very descriptive or326

even usable. Indeed, the algebraic curves can reach into the left half-plane {Re(z) < 0}327

(making the bound useless due to 0 being included in the bounding circle) or, in the328

more favorable case, the arcs of the algebraic curve are extremely unlikely to align with329

the circle so that the bound have some resemblance of being what we earlier called330

appropriate. Naturally, the bound on the right-hand side of (3.12) is constructed to331

remedy that but the key question becomes if this bound is also functional, namely if332

we can (approximately) evaluate it.333

To this end, we follow the excellent paper [5] on this topic and start by looking at334

the asymptotic convergence factor (justified by Remark 3.6 above). Considering (3.12)335

we are led to look at the so-called logarithmic capacity of Γ, denoted by cap(Γ), which336

can be viewed as a measure of a compact set without isolated points in C; see [24, 13, 5]337

for the definition and further reading, but also [2] for progress on the calculation of338

logarithmic capacities. Importantly, cap(Γ) is known to asymptotically correspond to339

the maximal modulus of the extremal polynomials (sometimes also called Chebyshev340

polynomials) associated with Γ, namely341

(3.13)

(
min

deg(φ)≤ℓ
max
z∈Γ

|φ(z)|
)1/ℓ

→ cap(Γ), as ℓ → +∞,342

where the quantity on the left-hand side relates to the quantities we have seen in the343
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GMRES bounds. There are two important caveats to using cap(Γ). The first one,344

which has been also highlighted as a caveat for using the analysis in [5] overall, is the345

fact that (3.13) only provides some information about the limit behavior as ℓ → +∞,346

whereas we are interested in the behavior for relatively small values of ℓ, say ℓ ≤ 50 or347

100. To large extent this issue is addressed by Remark 3.6 that states that we expect348

a linear convergence throughout the iteration. The second one is the fact that (3.13)349

describes the limit scaling of the maximal modulus over all polynomials – it lacks the350

crucial scaling φ(0) = 1 of Krylov methods. This issue can be fixed by re-scaling351

(see [5, Section 2]), shifting our attention from the logarithmic capacity to Green’s352

functions associated with Γ, as long as Γ is compact and without any isolated points.353

Things simplify considerably if we assume that Γ is connected as then the nor-354

malized quantity355  min
φ(0)=1

deg(φ)≤ℓ

max
z∈Γ

|φ(z)|


1/ℓ

356

can be evaluated directly using conformal maps, in particular the Schwarz-Christoffel357

maps. Without going into the details (the interested reader can find these in [5,358

Sections 2 and 3]), we obtain the asymptotic convergence factor estimate ρest as359

(3.14) ρest := lim
ℓ→+∞

 min
φ(0)=1

deg(φ)≤ℓ

max
z∈Γ

|φ(z)|


1/ℓ

=
1

|Φ(0)|
,360

where Φ(z) is the Schwarz-Chriostoffel map that maps the exterior of Γ to the ex-361

terior of the unit circle. In [5, Section 3, Theorem 2 and below], the authors put this as362

363
“. . . if Γ is connected, the estimated asymptotic convergence factor
for a matrix iteration depends on how far the origin is from Γ –
provided that this distance is measured by level curves associated with
the exterior conformal map.”

364

365

366

We would like to emphasize the word estimate when talking about ρest because we367

truly do not get a bound anymore – in fact we get an underestimate as highlighted368

also in [5, Section 5, equation (STEP1) and also Table 1]. However, we expect this369

estimate to be descriptive as explained above.370

For not too complicated connected, compact sets the map Φ and its value at the371

origin can be calculated using the Schwarz-Christoffel MATLAB toolbox [4], but we372

immediately notice that in Figure 1 the set of eigenvalues along Γ is not connected373

and the actual algebraic curve Γ itself is also not available in an easy form, i.e., neither374

of these can be directly given as an input to the SC toolbox. We take the natural next375

step and approximate Γ by its linear interpolation based on the available eigenvalues376

ξ
(i)
θ . The linear interpolation gives us a good approximation of the arcs of Γ and we377

use the point 1 + 0i as the natural point to join them (also by linear interpolation)378

and denote the resulting set Γh. Recalling the limit behavior in (3.6), we also see that379

Γh will tend towards Γ as h → 0 for our model problem.380

The calculation of ξ
(i)
θ is independent for each k = 1, . . . , n but for large n the SC381

toolbox can suffer numerically when calculating with Γh that is densely populated by382
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Fig. 3. The eigenvalues of the matrices Xθk (red) and Xϑk
(blue, for different values of q),

using the preconditioner Pd. Joining these together with line segments would yield the curves Γh

(red) and Γq (blue).

the interpolation points – both in the sense of large computational complexity as well383

as in the sense of numerical issues (called over-crowding, see [4] but also [6, Section384

2.6]). Moreover, we usually have only rough estimates on the extremal eigenvalues385

θmin and θmax of L rather than its full spectrum. To this end, we recall the idea in [10,386

Section 4] and instead of calculating Γh we use the information about θmin,max and387

artificially sample a fixed number of “fake” points ϑk between them, say q of them.388

Then we replace θk by ϑk in the definition of Γh, obtaining Γq – an approximation of389

Γh (and a further approximation of Γ) based on the linear interpolation given by the390

eigenvalues of the matrices Xϑk
. We illustrate these points in Figure 3.391

Another key point is that using the SC toolbox6 – namely the functions extermap392

and evalinv – has difficulties (as far as we understand it) when the arcs of Γq intersect,393

e.g., as is the case for s = 8 and the preconditioner P l, see Figure 1. Intuitively,394

this makes sense as the exterior of Γq then has multiple components, making the395

original set-up more complicated (a theoretical treatment of such problems could be396

approached based on [8]). We address this issue by taking the “envelope” of the397

arcs – if two arcs intersect, we follow the one staying outwards, e.g., in the case398

of s = 6 (or s = 8) and the preconditioner P l we would exclude a portion of the399

densely populated end of the arc (two arcs) closer to the real axis as these portions lie400

“inward” relative to the arcs with the larger imaginary part, see Figure 1 and Figure 4401

ahead. Finally, we illustrate the calculated Schwarz-Christoffel maps – or rather their402

contours – in Figure 4 together with the used inputs Γq (with the exception of s = 6, 8403

and the preconditioner P l, where we used the “envelopes”) and also the asymptotic404

convergence factor estimate ρest in Figure 5. First, we see that the results in Figure 5405

fully support the arguments in Remark 3.6 for considering ρest as the descriptive406

quantity for the convergence factor. Including an estimate for κS then gives also407

an estimate for GMRES convergence – not just its rate, see Section 4. Second, we408

note that for s = 8 and the preconditioner P u, the arcs turned so that the right-409

6In our case, Γq qualifies as a degenerate polygon acceptable by the toolbox.
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Fig. 4. In red: the curves Γq (first plots 1 to 7) and their “envelopes” (plots 8 and 9) for
the Gauss Butcher tableau, taking q = 15. In black: the contours of the corresponding Schwarz-
Christoffel map of the exterior of these curves (or envelopes) mapped to the exterior of the unit
circle, see extermap in [4].

most arcs almost intersect themselves. This causes problems for the toolbox, which410

during the calculations raises a flag stating that the calculated map did not converge411

as expected. Although the predicted ρest seems accurate, we see in Figure 4 that412

contours have ripples, confirming that the calculated results should be taken with413

caution. This can be fixed by a similar “envelope-like” approach we described for414

s = 6, 8 and the preconditioner P l, see Section 4, obtaining a further approximation.415

Although there are a few similar caveats concerning the implementation of the above416

ideas, we have always found that a simple solution (such as considering the envelope417

or pruning the fake points in order to alleviate the crowding) can be used to fix them418

and still give an appropriate insight into the GMRES convergence factor. As long as419

κS does not completely dominate the ideal GMRES bound (2.11) this then translates420

to descriptive GMRES convergence estimates, see Section 4.421

The above analysis also gives insight into the staircase-like behavior, which has422

been observed and explained for s = 2 and the preconditioner P d in [10] working with423

the minimal residual polynomial φMR
ℓ (sometimes also called the GMRES polynomial;424

see [18, Section 5.7.1]). The arguments used in [10] remain valid as long as the425
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Fig. 5. The convergence behavior of preconditioned GMRES, using the Gauss Butcher tableau,
together with the convergence factor estimates based on ρest.

branches are not very close to each other7 – as long as the branches are far apart,426

the maximum of the polynomial φMR
ℓ will decrease significantly more at the steps427

ℓ = s · j for j = 1, 2, . . . because only then each branch can get some attention. If the428

branches become close, then we do not expect this extra jump because keeping the429

absolute value of the polynomial small along one of the branches naturally translates430

into keeping the absolute value of the polynomial also small enough along another431

one. This is most pronounced in the first s iterations of GMRES, as we can see432

in Figure 5, where the convergence curves begin with a slower convergence phase –433

precisely s steps – for P d and P u, in contrast to the ones of P l, where the arcs intersect434

and are, in general, closer to each other. We illustrate this further in Figure 6 for435

the preconditioner P d for s = 4, 8 by looking at the polynomial φMR
ℓ and its roots436

(called harmonic Ritz values). We see that in the first row (4 branches, far apart) the437

possibility of “placing” one root along each of the branches was much more crucial438

(resulted in a more significant decrease of the modulus of the polynomial over the439

spectrum of the preconditioned system) than for the second row (8 branches with two440

complex conjugate pairs of branches that are close to each other). We note that an441

example of explanation (and prediction) of a complete staircase behavior of GMRES442

can be found in [5, Figure 9 and below].443

Having analyzed the model problem, we want to emphasize that the approach444

relied on two assumptions – (a) the spectrum of L covers (reasonably) uniformly a445

real interval Iτ,h,... and (b) the condition numbers κ(Sθ) stay bounded for θ ∈ Iτ,h,....446

Importantly, in many problems (a) is not satisfied even though the spectrum of L still447

shows the crucial “one-dimensionality”, i.e., the eigenvalues of L densely populate a448

curve Ψ ⊂ C. To demonstrate, we consider a model problem of 1D advection-diffusion,449

450

(3.15) ∂tu = (∂x − κ∂xx)u+ f in R× (0, Tend),451

7In [10], the branches are two line segments parallel to the imaginary axis that are, moreover,
reasonably well separated along the real line, i.e., a natural case of being “not very close to each
other”.
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Fig. 6. The level curves of the GMRES polynomials φMR
ℓ for the preconditioned system(

Pd
)−1

M together with the spectrum of this system as well as the roots of φMR
ℓ (so-called har-

monic Ritz values). We set N = 50.

which we discretize in space with a centered finite difference scheme with a mesh size452

h, obtaining an infinite tri-diagonal matrix L with the stencil8453 
. . . h− κ

−h− κ 2κ h− κ

−h− κ
. . .

 ,454

which can be in real calculations replaced by a finite matrix with, e.g., the periodic455

boundary conditions. To remain concise we focus only on the bound here and postpone456

an example with GMRES convergence graphs to Section 4. The advection-diffusion457

problem is suitable as the eigenpairs can be calculated explicitly,458

(3.16) λk = 2κ− 2κ cos(kπh) + i · 2h sin(kπh) vk = [exp(ikπjh)]j∈Z for any k,459

and hence we see that θk densely populate the ellipse Ψ centered at 2κτ/h2 with460

semi-axis parallel to the real and imaginary axis and with width 4κτ/h2 and height461

2τ/h. First, we note that both Corollary 3.4 and 3.5 still hold. Importantly, we can462

sample ϑk from Ψ and proceed in completely analogous manner, only now having463

Xϑk
∈ Cs×s. This seems to suggest that the symmetry of the branches of Γq wrt to464

the real axis is lost. However, as long as we sample ϑk symmetrically wrt to the real465

axis the branch symmetry is preserved as we show next.466

Proposition 3.7. Let ϑ ∈ C have positive imaginary part. Taking Mϑ, P
⋆
ϑ and467

X⋆
ϑ as in Proposition 3.3 for any ⋆ ∈ {d,GSU,u,GSL, l} we get468

X⋆
ϑvϑ = ξϑvϑ =⇒ X⋆

ϑ
vϑ = ξϑ vϑ,469

where ·̄ stands for the entry-wise complex conjugation. In particular, the eigenvalues470

of X⋆
ϑ
are complex conjugate to those of X⋆

ϑ.471

8We keep the notation consistent with Section 2 and hence L has the 1/h2 scaling in front.
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Fig. 7. In red: the eigenvalues of the preconditioned systems showing the symmetry predicted
in Proposition 3.7 when taking λk as in (3.16), with κ = 0.01 and h = 1/50 and the Gauss Butcher
tableau. In black: the contours of the corresponding Schwarz-Christoffel map of the exterior of these
curves (or envelopes) mapped to the exterior of the unit circle, see extermap in [4]. We also show
for each case the estimated linear convergence factor of GMRES ρest, see (3.14). To obtain these
we use the techniques described above, i.e., calculating “envelopes” (which are not visible) based on
suitable sparsification of the boundaries of the spectra.

Proof. The proof is identical for all choices of ⋆ and we show it for ⋆ = d. Through-472

out the proof we understand ·̄ as the entry-wise complex conjugation without any473

transposition of the vectors or matrices.474

First, we notice that475

Mϑ = Mϑ and P d
ϑ
= P d

ϑ.476

Next, we recall that (E+ iF )−1 = (E+FE−1F )−1− iE−1F (E+FE−1F )−1 (for any477

E,F ∈ Rs×s and E invertible) and hence478 (
P d
ϑ

)−1
=

(
P d
ϑ

)−1
.479

Recalling that for any X ∈ Cs×s and v ∈ Cs, we have Xv = Xv we take the matrix480
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Xd
ϑ with an eigenpair (ξϑ,vϑ) and calculate481

Xd
ϑ
vϑ = Mϑ

(
P d
ϑ

)−1
vϑ = Mϑ

(
P d
ϑ

)−1
vϑ = Xd

ϑ vϑ = ξϑ vϑ,482

finishing the proof.483

In other words, as long as Ψ is symmetrical wrt to the real axis and we sample484

pairs of complex conjugate points along it, the analysis and techniques described above485

can be used without any need for adjustments. We show the plots corresponding to486

the discretization of the model problem (3.15) in Figure 7. We comment on some487

direct generalizations next.488

Remark 3.8. Importantly, some relevant, higher-dimensional problems lead to L489

with spectrum along unions of 1D curves, i.e., along Ψ1, . . . ,Ψm, see, e.g. [17, Sec-490

tion 6]. The above techniques can be applied to each Ψi separately and then taking491

the appropriate mix of the resulting envelopes in order to obtain GMRES estimates.492

If Ψ is not symmetrical, then the techniques need to be adjusted when using the493

Schwarz-Christoffel toolbox, as Γq is possibly non-symmetric wrt the real axis but494

otherwise the results still apply.495

We also want to comment on a similarity with the results in [16, 17]. There, the496

authors addressed the question of delay of convergence by using similar formulations497

to ours, also obtaining a GMRES problem reformulated as for a block-diagonal ma-498

trix using Kronecker-product-like techniques as in Lemma 3.1. In particular, in [17,499

Section 3.1] the authors use the equality500

∥rℓ∥ = min
φ(0)=1

deg(φ)≤ℓ

∥∥∥∥∥∥∥φ

X1

. . .

Xn


 r0

∥∥∥∥∥∥∥ = min
φ(0)=1

deg(φ)≤ℓ

√√√√ n∑
j=1

∥∥∥φ (Xj) s
(i)
0

∥∥∥,501

where s
(i)
0 is the i-th subvector of length s of QTΠr0, to obtain a lower bound502

(3.17) ∥rℓ∥2 = min
φ(0)=1

deg(φ)≤ℓ

n∑
j=1

∥∥∥φ (Xj) s
(i)
0

∥∥∥2 ≥
n∑

j=1

min
φ(0)=1

deg(φ)≤ℓ

∥∥∥φ (Xj) s
(i)
0

∥∥∥2503

on the GMRES convergence behavior, explaining the initial stagnation phase in an504

advection-diffusion problem. This way they bound the global minimization problem505

(corresponding to solving a problem with the block-diagonal matrix diag(X1, . . . , Xn))506

by the sum of the local minimization problems (each given by the small s-by-s matrix507

Xj). By careful analysis of the interplay of the right-hand side (or initial residual)508

and the diagonal blocks in [17, Section 3.1] (there the diagonal blocks are, moreover,509

tridiagonal and Toeplitz), the authors conclude510

511
“. . . the presence of at least one system with tridiagonal Toeplitz ma-
trix Tj = tridiag(γj , λj , µj) that is ’close to the Jordan block’ (cf. [17,
Section 3.3] but see also [16]), and with l representing the index of
the first significant entry of the corresponding right-hand side, pre-
vents fast convergence of GMRES for the first N − l steps (N being
the size of the blocks Tj) . . .
. . .As explained in Section 3.1, the lower bound is useless for an-
alyzing the convergence behavior after the step N − l, possibly even
earlier. Hence the above approach cannot be used for quantifying any
possible acceleration of convergence after the initial phase. ”

512
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513

514

We see that the approach is fundamentally different – both in the intended direction515

as well as in the results it can deliver – in spite of the fact that it works with the same516

technique.517

We finalize this section with a remark on the field of values (sometimes also518

called the numerical range) and pseudospectra, which sometimes are extremely useful519

to understand and predict GMRES convergence behavior, especially if the eigenbasis520

of the system matrix is ill-conditioned, see, e.g., [7] and also [18, Section 5.7.3, pp.521

296] and the references therein.522

Remark 3.9. Another commonly used bound for GMRES uses the field of values523

ν(C) or the δ-pseudospectrum σδ(C) of the system matrix C. By a direct calculation524

we obtain, for our model problem, the field of values as525

ν
(
MP−1

)
=

n∑
i=1

ν (Xk)
(
and analogously for ν

(
P−1M

))
,526

where the Xk are given as in (3.7) and the set addition is understood element-wise,527

i.e., ν(X1) + ν(X2) = {α1 + α2 |α1 ∈ ν(X1), α2 ∈ ν(X2)}, or, more generally528

ν
(
MP−1

)
⊂ κ(Q)

n∑
i=1

ν (Xk)
(
and analogously for ν

(
P−1M

))
.529

For the pseudospectrum we obtain an analogous formula, namely530

σδ

(
MP−1

)
⊂ κ(Q)

n∑
i=1

σδ (Xk)
(
and analogously for ν

(
P−1M

))
.531

In other words, the principle of working with the small matricesXk instead of the large532

matrix MP−1 naturally applies also to the other standard techniques for analyzing533

GMRES convergence behavior. However, adapting and using bounds based on field534

of values or the pseudospectrum of the preconditioned system for this set-up remains535

a topic for future research.536

4. Numerical Examples. In this section we use the above analysis for more in-537

volved settings and also to demonstrate the convergence estimates (instead of only the538

convergence factor estimates). To be precise, we consider the convergence estimates539

(4.1)
∥rℓ∥
∥r0∥

⪅ min
{
κest
S ρℓest, 1

}
,540

where the estimate κest
S of κS is computed from the eigenbasis condition numbers of541

the “fake sampled” matrices Xϑk
for k = 1, . . . , q. The convergence factor estimates542

reflect only the spectral part of the bound (2.11). Including an estimate of the term543

κ(S) in (2.11) then gives us a convergence estimates, which we show in this section.544

We recall that the seeming independence of the preconditioner quality on the545

spatial mesh size h was sufficiently documented elsewhere (see [23, 20, 3, 10, 21]) and546

explained in Section 3 so that in our eyes, there is no need to address this direction547

here. Illustration of the solutions as well as further numerical experiments can be548

found in [21, Chapter 7]. For the sake of simplicity, we fix the number of time steps549

to balance the spatial and time error (see the (L2) definition in Section 2), namely we550
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Fig. 8. The initial triangulations for Example 1 and 2 together with the boundary condition
types and, for Example 1, also with highlighting the points with lower heat conductivity.

consider second order space discretization schemes, p-th order Runge-Kutta schemes551

and fix552

τ = h
2
p .553

Last but not least, we have not set a relative residual tolerance criterion for stopping554

GMRES, meaning that GMRES went on until either the relative residual was on the555

level of machine precision or the maximum number of iterations was reached. This is556

not a good choice from the point of view of the solution process efficiency but since557

our primary focus is on studying the preconditioners, we found this reasonable.558

Diffusion problems. We consider FEM discretizations in space9 for discontinu-559

ous diffusion coefficient and for perforated domain in Example 1 and 2 with varying560

boundary conditions, see Figure 8.561

Example 1: Cookies in the oven. The first problem is a simulation of baking562

cookies in an electrical oven projected in 2D, an idea borrowed from [15]. The cookies563

have a worse heat conductivity than the surrounding air (piecewise constant in space564

and constant in time) and the setting demands various boundary conditions, resulting565

in566

∂u

∂t
u = div (σ∇u) + f in Ω× (0, T ],

∂u

∂n
u = 0 on ΓN × (0, T ],

∂u

∂n
u+ pu = 0 on ΓR × (0, T ],

u = 0 at Ω× {0},

567

9Wherever we talk about a FEM discretization, we use linear Lagrange polynomials on conform-
ing triangular meshes. Those are refined by the standard quadrisection of a triangle, with additional
post-smoothing of the mesh.
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Fig. 9. The GMRES convergence behavior with the convergence estimates based on ρest for
Example 1 with n = 26985.
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Fig. 10. The (sparsified) polygon approximations of the algebraic curves that are used in the
Schwarz-Christoffel MATLAB toolbox to calculate ρest for Example 1 – for some settings these

approximations correspond to the eigenvalues ξ
(i)
ϑ and in some these approximations only enclose

ξ
(i)
ϑ .

with Ω = (0, 4)× (0, 4) and the boundary of Ω is split into the Neumann and Robin568

parts ΓN ,ΓR. We set the data as569

ΓN = {x = 0} ∪ {y = 0} ∪ {y = 4}, ΓR = {x = 4}, p = 1, σ =

{
103 if (x, y) ∈ Cookie,

1 otherwise,

f(x, y, t) =

{
3 if ∥(x, y)− (2, 2)∥ ≤ 1,

0 otherwise,

570

and show the GMRES convergence behavior with the estimates in Figure 9 as well as571

the sampling of the algebraic curves in Figure 10.572
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Fig. 11. The GMRES convergence behavior with the convergence estimates based on ρest for
Example 2 with n = 26985.

Example 2: The cabin heating. The second problem uses the 2D projection of an573

attic room of a cabin in the western Bohemia region, whose primary heating is the574

chimney (bottom-right corner, modeled with a Dirichlet boundary condition changing575

in time), with two windows (top and bottom) and a door (right), modeled with576

Robin boundary conditions with Robin parameters pw and pd, and a good insulation577

otherwise, modeled with a Neumann condition. We obtain the problem578

∂u

∂t
u = div (σ∇u) in Ω× (0, T ],

∂u

∂n
u = 0 on ΓN × (0, T ],

∂u

∂n
u+ pu = 0 on ΓR × (0, T ],

u = 0 at Ω× {0},

579

and take the data as580

σ = 1, pw = 0.1, pd = 10, gD(x, y, t) =

{
min{t, 0.7} if (x, y) ∈ ΓD,

0 otherwise,
581

and show the GMRES convergence behavior with the estimates in Figure 11 as well582

as the sampling of the algebraic curves in Figure 12.583

Summary. The convergence factor estimates are virtually as accurate as for the584

model problems in Section 3 – in Figures 9 and 11 this is clearly visible by comparing585

the slopes of the red and black “lines”, similarly to Figure 5. But the conditioning of586

the matrices Xϑk
notably deteriorated as we increased s, hence worsening a bit the587

convergence estimates. The fact that this does not show up in the GMRES conver-588

gence behavior suggests that more delicate bounds, such as mentioned in Remark 3.9589

could give a more detailed insight into the matter. However, in all cases the conver-590

gence estimates lag behind the actual convergence behavior by 10-20 iterations (which591

is in many if not most situations considered to be reasonably accurate).592

We also showed the polygons used in the Schwarz-Christoffel toolbox. In our593

experience, large values of q lead to crowding problems in the SC toolbox but luckily594
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Fig. 12. The (sparsified) polygon approximations of the algebraic curves that are used in the
Schwarz-Christoffel MATLAB toolbox to calculate ρest for Example 2 – for some settings these

approximations correspond to the eigenvalues ξ
(i)
ϑ and in some these approximations only enclose

ξ
(i)
ϑ .

even a very small value was usually enough. We also found that spacing the fake595

points ϑk logarithmically in the corresponding interval somewhat alleviates this is-596

sue and leads to more accurate predictions of the arcs of the given algebraic curve.597

Nevertheless, notice that in many of the plots we excluded part of the arcs, mainly598

because either (a) the arcs intersected and we took the envelope of the algebraic curve599

(usually for the preconditioner P l) or (b) the points sampled along the arcs crowded600

sections of the arcs, which caused issues for the toolbox. In such cases we sparsified601

these regions by dropping some of these points. As a result, the Schwarz-Christoffel602

external map converged better and faster than for the problem in Section 3.1 and the603

contours were “ripple-free” for all of our problems, otherwise looking almost precisely604

as the ones in Figure 4.605

Advection problem. We consider a centered FD discretization in space of a 2D606

advection problem on a unit square, i.e.,607

(4.2)

∂u

∂t
= a · ∇u+ f in Ω× (0, T ],

u = 0 on ∂Ω× (0, T ], u = 0 at Ω× {0},
608

with Ω = (0, 1)× (0, 1) and609

a = [1, 1]T and f(x, y, t) =

{
10 if ∥(x, y)− (0.5, 0.5)∥ ≤ 0.2,

0 otherwise,
610

and show the GMRES convergence behavior with the estimates in Figure 13 as well611

as the sampling of the algebraic curves in Figure 14.612

We used a larger value of q = 300 in order to capture the branches of Γq (which is613

not possible with q = 15 but can plausibly be done with lower values than 300), and614

used sparsification of the envelopes to ensure smooth convergence of the SC toolbox.615

We see that the convergence rate estimates are again very accurate in most cases.616
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Fig. 13. The GMRES convergence behavior with the convergence estimates based on ρest for
the advection problem (4.2) with n = 22210.
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Fig. 14. The (sparsified) polygon approximations of the algebraic curves that are used in the
Schwarz-Christoffel MATLAB toolbox to calculate ρest for the advection problem (4.2).

Notably, for s = 6 and P u the GMRES convergence estimate is more accurate than for617

the diffusive problems because GMRES convergence suffered from the non-normality618

of the system eigenbasis, and hence including the condition number estimate in (4.1)619

reflected an actual GMRES behavior. Unfortunately, for s = 8 and P d,u the term620

κest
S seems to fully dominate the bound.621

5. Concluding remarks. Our main goal has been to understand the block622

preconditioners considered in [23, 3, 20] in more detail, and to try to explain their623

success and/or limitations. This goal was, in our eyes, mostly achieved but could be624

further improved in the sense of Remark 3.9 or by considering a more refined version of625

the bound (2.11), see [7, Section 2.1, equations (2.1) and (EV’)] – this remains an area626

of interest for us for the future. Moreover, the above analysis can be directly used to627
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try to optimize Runge-Kutta methods, following the ideas in [23, 21, 10]. We also note628

that in practice, solving with either of the matrices P d,u,l,GSU,GSL,... is often done with629

some level of inaccuracy, e.g., using a multigrid method. The question of interaction630

of this inaccuracy with the overall GMRES convergence is an important one and to631

the best of our knowledge has been addressed only numerically in [21, Chapter 7]. We632

also note that adapting the above analysis to the framework presented in [27, 26], or633

reformulating it from the vector equation to the matrix equation as suggested in [22],634

and to study in detail the comparison of these approaches for the IRK setting are635

attractive directions for future research.636
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