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Abstract Optimized Schwarz methods use transmission conditions which are
adapted to the underlying partial differential equation to be solved in order to reach
fast convergence. The best such transmission conditions involve Schur complements,
and traditionally they are approximated by sparse matrices in optimized Schwarz
methods. Since the seminal work on H-matrices by Hackbusch it is however known
that Schur complements can often be very well approximated by data-sparse, low
rank techniques. We investigate here for the first time such data-sparse approximate
transmission conditions for Schwarz methods, and study in particular if it suffices
to use classical data-sparse approximations, or if one should use the more natural
measure appearing in the transmission problem between subdomains to minimize
data-sparse approximations. Our numerical investigation shows that already classi-
cal data sparse approximations only targeting approximating the Schur complement
lead to very effective transmission conditions for Schwarz mwthods.

1 Introduction and Model Problem

Optimized Schwarz methods (OSMs) use optimized transmission operators between
subdomains adapted to the equation to be solved to maximize the convergence rate.
OSMs have been studied in detail for localized transmission operators, see [6] and
references therein, which after discretization become structurally sparse, banded
matrices. We consider here non-localized transmission operators that become after
discretization data-sparse matrices – a complementary approach to structural spar-
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Fig. 1 The physical domain on the left and its subdomains on the right.

sity. Our main focus is on how to optimize OSMs within the classes of data-sparse
approximations of the Schur complement.
Asmodel problemwe consider the Poisson equation onΩ = (−𝑎, 𝑎)×(0, 1) ⊂ R2,

−Δ𝑢 = 𝑓 in Ω, and 𝑢 = 𝑔 on 𝜕Ω, 𝑓 and 𝑔 given. (1)

We decompose Ω into two overlapping subdomains Ω1 = (−𝑎, 𝐿) × (0, 1) and
Ω2 = (−𝐿, 𝑎) × (0, 1) with interfaces Γ1 and Γ2, overlap 𝑂 and complements
Θ2 := Ω𝐶

1 and Θ1 := Ω𝐶
2 , see Figure 1. Creating an equidistant mesh on Ω with

mesh-size ℎ, we denote by 𝑁𝑟 the number of grid rows and 𝑁𝑐 the number of grid
columns, and we discretize (1) with a finite difference scheme, obtaining the block
tridiagonal system matrix

𝐴 =


𝐴Θ1 𝐴Θ1 ,Γ2
𝐴Γ2 ,Θ1 𝐴Γ2 𝐴Γ2 ,𝑂

𝐴𝑂,Γ2 𝐴𝑂 𝐴𝑂,Γ1

𝐴Γ1 ,𝑂 𝐴Γ1 𝐴Γ1 ,Θ2
𝐴Θ2 ,Γ1 𝐴Θ2


. (2)

2 Parallel Optimized Schwarz Method

To solve the discretized problem with the parallel optimized Schwarz method
(POSM), see [6, Section 6.1], and also the equivalent optimized Restricted Additive
Schwarz formulations in [5, 10], we form the augmented system matrix (see [10,
Section 3.4])
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𝐴aug :=
[
𝐴Ω1 𝐴Ω1 ,Ω2
𝐴Ω2 ,Ω1 𝐴Ω2

]
:=



𝐴Θ1 𝐴Θ1 ,Γ2
𝐴Γ2 ,Θ1 𝐴Γ2 𝐴Γ2 ,𝑂

𝐴𝑂,Γ2 𝐴𝑂 𝐴𝑂,Γ1

𝐴Γ1 ,𝑂 𝐴̃Γ1 𝐴̃Γ1 ,Γ1 𝐴Γ1 ,Θ2
𝐴Γ2 ,Θ1 𝐴̃Γ2 ,Γ2 𝐴̃Γ2 𝐴Γ2 ,𝑂

𝐴𝑂,Γ2 𝐴𝑂 𝐴𝑂,Γ1

𝐴Γ1 ,𝑂 𝐴Γ1 𝐴Γ1 ,Θ2
𝐴Θ2 ,Γ1 𝐴Θ2


,

where the transmission conditions are in the last block row of [𝐴Ω1 𝐴Ω1 ,Ω2 ] and first
block row of [𝐴Ω2 ,Ω1 𝐴Ω2 ], which contain

𝐴̃Γ1 := 𝐴Γ1 + 𝑆1, 𝐴̃Γ1 ,Γ1 := −𝑆1 and 𝐴̃Γ2 := 𝐴Γ2 + 𝑆2, 𝐴̃Γ2 ,Γ2 := −𝑆2.

Here 𝑆1 and 𝑆2 are transmission matrices that can be chosen to get fast convergence
(classical parallel Schwarz would use 𝑆1 = 𝑆2 = 0). POSM for the augmented system
has as iteration matrix 𝑇 the non-overlapping block Jacobi iteration matrix for 𝐴aug,

𝑇 = 𝐼 −
2∑︁
𝑖=1

𝑅𝑇Ω𝑖
𝐴−1
Ω𝑖
𝑅Ω𝑖

𝐴aug with 𝑅Ω1 = [𝐼 0], 𝑅Ω2 = [0 𝐼], (3)

where 𝑅Ω𝑖
is the discrete restriction operator to the subdomain Ω𝑖 . Setting

𝐸
Ω1
Γ2
:=

[
0Θ1 𝐼Γ20𝑂0Γ1

]𝑇
, 𝐸

Ω1
Γ1
:=

[
0Θ10Γ20𝑂 𝐼Γ1

]𝑇
, 𝐸

Ω1
Θ1
:=

[
𝐴Γ2 ,Θ10Γ20𝑂0Γ1

]𝑇
,

𝐸
Ω2
Γ2
:=

[
𝐼Γ20𝑂0Γ10Θ2

]𝑇
, 𝐸

Ω2
Γ1
:=

[
0Γ20𝑂 𝐼Γ10Θ2

]𝑇
, 𝐸

Ω2
Θ2
:=

[
0Γ20𝑂0Γ1𝐴Γ1 ,Θ2

]𝑇
,

we formulate a convergence result for POSM, analogue to [5, Theorem 3.2].

Theorem 1 ([5, Section 3, Lemma 3.1, Theorem 3.2])
The POSM iteration matrix 𝑇 in (3) has the structure1

𝑇 =

[
0 𝐾
𝐿 0

]
,
𝐾 := 𝐴−1

Ω1
𝐸
Ω1
Γ1

[
𝐼 + 𝑆1 (𝐴−1

Ω1
)Γ1 ,Γ1

]−1 (
𝑆1 (𝐸Ω2

Γ1
)𝑇 − (𝐸Ω2

Θ2
)𝑇

)
,

𝐿 := 𝐴−1
Ω2
𝐸
Ω2
Γ2

[
𝐼 + 𝑆2 (𝐴−1

Ω2
)Γ2 ,Γ2

]−1 (
𝑆2 (𝐸Ω1

Γ2
)𝑇 − (𝐸Ω1

Θ1
)𝑇

)
.

(4)

Moreover, the asymptotic convergence factor of POSM is bounded by

𝜌 (𝑇) ≤
√︁
‖𝑀1𝐵1‖2 · ‖𝑀2𝐵2‖2,

𝑀1 :=
[
𝐼 + 𝑆1 (𝐴−1

Ω1
)Γ1 ,Γ1

]−1 (
𝑆1 + 𝐴Γ1 ,Θ2𝐴−1

Θ2
𝐴Θ2 ,Γ1

)
, 𝐵1 := (𝐴−1

Ω2
)Γ1 ,Γ2 ,

𝑀2 :=
[
𝐼 + 𝑆2 (𝐴−1

Ω2
)Γ2 ,Γ2

]−1 (
𝑆2 + 𝐴Γ2 ,Θ1𝐴−1

Θ1
𝐴Θ1 ,Γ2

)
, 𝐵2 := (𝐴−1

Ω1
)Γ2 ,Γ1 .

(5)

1 The notation (𝐴−1
Ω1
)Γ1 ,Γ1 is an abbreviation for (𝐸

Ω1
Γ1

)𝑇 𝐴−1
Ω1
𝐸

Ω1
Γ1
. By analogy we also define

(𝐴−1
Ω1
)Γ1 ,Γ2 and the counterparts for 𝐴−1

Ω2
.
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Remark 1 Because of the symmetry of the subdomains and the problemwe have 𝑆1 =
𝑆2 =: 𝑆, implying2 𝑀1 = 𝑀2 =: 𝑀 and 𝐵1 = 𝐵2 =: 𝐵. Notice that both the spectral
radius and the norm of 𝑇 are minimized becoming identically zero by taking for 𝑆
the exact Schur complement transmission matrix, i.e., 𝑆 = 𝑆★ := −𝐴Γ1 ,Θ2𝐴−1

Θ2
𝐴Θ2 ,Γ1 .

3 Data-sparse transmission conditions

The term data-sparse matrix refers to a low-rank matrix or a matrix with a low-rank
structure in some of its blocks. Taking D as the set of data-sparse matrices of a
particular type, e.g., low-rank, we focus on the minimization problem

min
𝑆∈D

‖𝑀𝐵‖2 = min
𝑆∈D





[𝐼 + 𝑆(𝐴−1
Ω1
)Γ1 ,Γ1

]−1 (
𝑆 + 𝐴Γ1 ,Θ2𝐴−1

Θ2
𝐴Θ2 ,Γ1

)
𝐵






2

(6)

≤ min
𝑆∈D





[𝐼 + 𝑆(𝐴−1
Ω1
)Γ1 ,Γ1

]−1 (
𝑆 + 𝐴Γ1 ,Θ2𝐴−1

Θ2
𝐴Θ2 ,Γ1

)
𝐵






𝐹

. (7)

The Schur complement 𝑆★ makes the second term in the norms, the numerator part
of 𝑀 , zero but lies in general not inD. Minimizing only this term overD might not
suffice, since the denominator part of 𝑀 can also play an important role, as shown
for structurally sparse transmission conditions in [5, Lemma 5.1, 5.3], [11, Section
2.5, pp. 80]. We call NumOpt minimizing the numerator part of 𝑀𝐵 in norm, and
FracOpt minimizing the entire expression. The NumOpt solution is in general given
by the truncated SVD of 𝑆★ or its blocks. For (7) this solution is unique (as the
singular values of 𝑆★ are distinct), while for (6) we in general don’t have uniqueness.
On the other hand, (6) is a sharper bound on the convergence factor. We choose to
work with (7) and comment on the differences where appropriate.
A direct computation shows that all the matrices defining 𝑀 and 𝐵 in (5), except

possibly 𝑆1 and 𝑆2, can be diagonalized with the 1D discrete Fourier sine basis

𝑊 =
[
w1, . . . ,w𝑁𝑟−2

]
with w𝑘 =

[
sin

(
𝑘 𝜋

𝑁𝑟−1 𝑗
)]𝑁𝑟−2

𝑗=1
∈ R𝑁𝑟−2. (8)

We first take 𝑆 to be a symmetric, rank 𝑟 matrix of the form

𝑆 =

𝑟∑︁
𝑘=1

𝛾𝑘v𝑘v𝑇𝑘 , (9)

where 𝛾 ∈ R\{0} and v𝑘 ∈ R𝑁𝑟−2, linearly independent with ‖v𝑘 ‖ = 1. Note that (9)
cannot capture the diagonal singularity of 𝑆★ well with 𝑟 small3. Taking

2 We also use that both 𝐴Ω1 and 𝐴Ω2 are symmetric Toeplitz matrices and thus their inverses are
symmetric and also persymmetric, see [7, Section 4.7].
3We refer to [6, Section 5.3, Remark 16 and below] for a justification of this diagonal singularity.
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Fig. 2 ‖𝑀𝐵 ‖𝐹 for the parameters 𝛾𝑖 close to the eigenvalues of 𝑆★ for 𝑟 = 1 (left) and for 𝑟 = 2
(right), with NumOpt 𝛾𝑖 = −𝜇𝑖 highlighted by★.

v𝑘 = w𝑘 for 𝑘 = 1, . . . , 𝑟, (10)

the matrices 𝑀, 𝐵 can be diagonalized by𝑊 , and denoting the spectra by

{𝛼𝑘 }𝑁𝑟−2
1 := sp

(
(𝐴−1

Ω1
)Γ1 ,Γ1

)
, {𝜇𝑘 }𝑁𝑟−2

1 := sp
(
𝑆★

)
and {𝛽𝑘 }𝑁𝑟−2

1 := sp (𝐵) ,

we obtain for the eigenvalues4 𝜆𝑘 of 𝑀𝐵 the formula

𝜆𝑘 =
𝛾𝑘 + 𝜇𝑘
1 + 𝛾𝑘𝛼𝑘

𝛽𝑘 . (11)

Hence, in this special case, both NumOpt and FracOpt give identical result, namely
𝛾𝑘 = −𝜇𝑘 ! This is atypical for OSMs, see [5, 11], but is due to the fact that there
is no interaction between the choices of 𝛾𝑘 for different 𝑘 due to orthogonality. We
show this in Figure 2.
We note that in this case (7) is overestimating but its minimizer solves (6) as well,

i.e., the method itself is optimized, just the bound is not sharp.
For arbitrary vectors v1, . . . , v𝑟 ∈ R𝑁𝑟−2 in (9), even a rank one approximation

now can interact with all of the eigenmodes, and ‖𝑀𝐵‖ cannot be easily evaluated:
we obtain the formula

𝑊𝑇𝑀𝐵𝑊 =


𝛼1

. . .

𝛼𝑁𝑟−2


−1 


𝛼1

. . .

𝛼𝑁𝑟−2

 + 𝑆

−1 ©­­«𝑆 +


𝜇1

. . .

𝜇𝑁𝑟−2


ª®®¬

𝛽1
. . .

𝛽𝑁𝑟−2


with 𝑆 = 𝑊𝑇 𝑆𝑊 , and the denominator and numerator are given as two different
diagonal matrices with the same rank-𝑟 modification. Recalling [7, Theorem 8.5.3]

4 Since 𝑀𝐵 is diagonalized by 𝑊 , it is symmetric and thus the eigenvalues correspond to the
singular values up to a sign.
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Fig. 3 NumOpt and FracOpt for 𝑁𝑟 = 26, 𝐿 = ℎ and 𝑟 = 1. Top: coordinates of the resulting
normalized vector v in the basis𝑊 . Bottom: corresponding transmissionmatrices𝑆NumOpt, 𝑆FracOpt.

for 𝑟 = 1, a lengthy but direct calculation gives that the matrices can be diagonalized
with the same transformation if and only if (10) holds. Using therefore numerical
optimization5, extensive experiments showed that NumOpt and FracOpt lead to the
same optimal value numerically, for an example, see Figure 3. Again for (6) the
minimizer is not unique but offers a sharper estimate on the convergence factor,
and, in spite of having a worse bound in (7), the actual minimizer also solves the
2-norm problem in (6) and thus only the bound is affected, not the method. These
observations remained consistent changing any meaningful parameters of both the
problem and the various optimization routines.
We next investigate hierarchical matrices which are well suited to approximate

the singularity appearing on the diagonal of the Schur complement for elliptic
problems [1], and which were proposed for transmission for Helmholtz problems
in [3]. Hierarchical matrices were developed to approximate directly in norm, corre-
sponding to NumOpt, and in practice this might be sufficient due to the astounding
accuracy and efficiency of the hierarchical formats, see our example at the end. We
study whether NumOpt and FracOpt are equivalent also for hierarchical matrices.
The eigenvalue theory for hierarchical matrices focuses on localization of eigenval-
ues through iterative processes, see ,e.g., [9] and references therein. The explicit
computation of ‖𝑀𝐵‖ is hence out of reach, and we focus on numerical exploration.
We consider the simplest setting – a one-level hierarchy with the HODLR format6

and we assume 𝑁𝑟 = 2𝑛 for some 𝑛 ∈ N. Taking a 2-by-2 blocking of 𝑆,

𝑆 =

[
𝑆1 𝑆off−diag

𝑆𝑇off−diag 𝑆2

]
, with 𝑆1, 𝑆2, 𝑆off−diag ∈ R𝑛×𝑛,

5 We used the routine scipy.optimize() with the option shgo (see [2]) for global optimization
and options Nelder-Mead and BFGS for local optimization.
6 Standing for hierarchichal off-diagonal low-rank.
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Fig. 4 ‖𝑀𝐵 ‖ for the parameters 𝛾𝑖 of the off-diagonal block 𝑆off−diag𝐽 close to the eigenvalues
of that block for 𝑟 = 1 (left) and for 𝑟 = 2 (right), with the NumOpt result for 𝛾𝑖 highlighted by★.

the minimization problem (7) is posed over 𝑆 with 𝑆1 and 𝑆2 equal to their counter-
parts in 𝑆★ and with 𝑆off−diag of rank 𝑟 . As 𝑆★ is persymmetric, so are its off-diagonal
blocks, and taking 𝐽 as the exchange matrix7, we observe that 𝑆★off−diag𝐽 is symmet-
ric and thus permits a symmetric low-rank approximation of the form (9)8. Letting
q1, . . . , q𝑛 be the eigenvectors of 𝑆★, we first consider

𝑆off−diag𝐽 =
𝑟∑︁
𝑖=1

𝛾𝑖q𝑖q𝑇
𝑖 , (12)

where 𝛾𝑖 ∈ R\{0}. In our numerical experiments now FracOpt outperformed Nu-
mOpt slightly. For 𝑁𝑟 = 26, 𝐿 = ℎ and 𝑟 = 1 FracOpt converges 6% faster than
NumOpt9. This drops even lower for 𝑟 > 1 (as the off-diagonal blocks are low-rank,
e.g., 𝑟 = 2 gives 2%) and seems to be quite stable under mesh refinement (𝑁𝑟 = 52
gives 10%, 𝑁𝑟 = 258 gives 13%). For (6) instead of (7), we observe better bounds but
with the same tendencies when changing 𝑟 or 𝑁𝑟 . We show the results for 𝑟 = 1, 2 in
Figure 4. Comparing to the global low-rank case, the situation qualitatively changed,
as there is an improvement going from NumOpt to FracOpt.
For a more general set of vectors,

𝑆off−diag𝐽 =
𝑟∑︁
𝑖=1

𝛾𝑖v𝑖v𝑇𝑖 , (13)

7 The matrix with ones on the anti-diagonal and zeros elsewhere.
8 The low-rank approximation of 𝑆off−diag can then be directly reconstructed from the one of
𝑆off−diag𝐽 by observing that 𝐽 = 𝐽−1.
9 This refers to the improvement on the number of accurate digits obtained per iteration in terms of
the bound (5), e.g., FracOpt converging 100% than NumOpt refers to obtaining double the number
of accurate digits in one iteration of FracOpt compared to NumOpt (in terms of their bounds).
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Fig. 5 Comparison of NumOpt (top) and FracOpt (bottom) for 𝑁𝑟 = 26, 𝐿 = ℎ and 𝑟 = 1. We
show 𝑆offdiag (left), then 𝑆 (middle) and then 𝑀𝐵 (right). Although the difference in the second
column seems to be almost negligible, its effect on 𝑀𝐵 is clearly visible.

with v1, . . . , v𝑟 ∈ R𝑛 normalized and linearly independent, the FracOpt approach
gives again a minimizer 𝑆FracOptoff−diag that is suboptimal in terms of approximating
𝑆★off−diag, but minimizes ‖𝑀𝐵‖𝐹 better than 𝑆

NumOpt
off−diag. For 𝑟 = 1 we show a rep-

resentative example10 in Figure 5. For 𝑁𝑟 = 26, 𝐿 = ℎ and 𝑟 = 1, FracOpt converges
approximately 25% faster than NumOpt – in terms of the bound. This observation
is in alignment with the performance, see Figure 6 later on. Taking 𝑟 > 1 again
diminishes this improvement (with 𝑟 = 2 we get 13%) but refining ℎ increases the
improvement (with 𝑁𝑟 = 52 we get 43%) – in contrast to the previous setting. We
also observed that (6) and (7) now give different minimizers, which are comparable
in both the bound and the method performance ((7) is slightly worse). In the context
of OSMs, the optimization gains are quite small, see, e.g., [4, Section 3,4]. Thus, we
observe that FracOpt and NumOpt are no longer equivalent for hierarchical formats
but they seem to perform comparably for our model problem.
Finally, we show a numerical comparison of the iterative solver performance,

including a full hierarchical approximation of 𝑆★ in the formats HODLR and H2
in Figure 6 (the full formats correspond to NumOpt; for more details see [8, Figure
2.1 and 2.3] and references therein). We see that simple low rank approximations of
the entire Schur complement can not perform very well as they miss the diagonal
singularity. Hierarchical formats perform well, and follow our theoretical results.

10 In the sense that mesh refinement only refines these results but does not change their “shape”.
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Fig. 6 Convergence of POSM for different choices of 𝑆. LR denotes the global low-rank, HODLR_1
the one-level HODLR format and FracOpt(𝛾) , FracOpt denote the two variants (12) and (13)
(we omit this for the global low-rank as there is numerically no difference in these). HODLR, H2
are H-matrix formats corresponding to a binary partitioning with weak and standard admissibility
conditions, see [8, Figure 2.1 and 2.3]. We take 𝑁𝑟 = 26, 𝐿 = ℎ and 𝑟 = 1 wherever applicable.
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